#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
#include <fstream>
#include <iosfwd>
#include <math.h>
#include <iomanip>
#include "direct.h"
#include"stdlib.h"
#include "iostream"
#include "string"
using namespace std;
int
main(int argc, char** argv)
{
// Read in the cloud data
pcl::PCDReader reader;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>), cloud_f(new pcl::PointCloud<pcl::PointXYZ>);
reader.read("1.pcd", *cloud);
std::cout << "PointCloud before filtering has: " << cloud->points.size() << " data points." << std::endl; //*
// Create the filtering object: downsample the dataset using a leaf size of 1cm
pcl::VoxelGrid<pcl::PointXYZ> vg;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered(new pcl::PointCloud<pcl::PointXYZ>);
vg.setInputCloud(cloud);
vg.setLeafSize(0.01f, 0.01f, 0.01f);
vg.filter(*cloud_filtered);
std::cout << "PointCloud after filtering has: " << cloud_filtered->points.size() << " data points." << std::endl; //*
// Create the segmentation object for the planar model and set all the parameters
pcl::SACSegmentation<pcl::PointXYZ> seg;
pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
pcl::ModelCoefficients::Ptr coefficients(new pcl::ModelCoefficients);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane(new pcl::PointCloud<pcl::PointXYZ>());
pcl::PCDWriter writer;
seg.setOptimizeCoefficients(true);
seg.setModelType(pcl::SACMODEL_PLANE);
seg.setMethodType(pcl::SAC_RANSAC);
seg.setMaxIterations(300);
seg.setDistanceThreshold(0.5);
int i = 0, nr_points = (int)cloud_filtered->points.size();
std::stringstream ss;
const char* filepath = "E:\\VS2013_projects\\myself\\play";
mkdir(filepath);
string s1 = filepath;
while (cloud_filtered->points.size() > 0)
{
// Segment the largest planar component from the remaining cloud
seg.setInputCloud(cloud_filtered);
seg.segment(*inliers, *coefficients);
if (inliers->indices.size() == 0)
{
std::cout << "Could not estimate a planar model for the given dataset." << std::endl;
break;
}
char szFileName[30] = { 0 };
string filepath2;
sprintf(szFileName, "OUTPUT_%06d.pcd", i);
filepath2 = s1 + "\\" + szFileName;
// Extract the planar inliers from the input cloud
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cloud_filtered);
extract.setIndices(inliers);
// Get the points associated with the planar surface
extract.filter(*cloud_plane);
if (cloud_plane->points.size()>0)
{
std::cout << "PointCloud representing the planar component: " << cloud_plane->points.size() << " data points." << std::endl;
pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud;
colored_cloud = (new pcl::PointCloud<pcl::PointXYZRGB>)->makeShared();
std::vector<unsigned int> colors;
colors.push_back(static_cast<unsigned int> (rand() % 256));
colors.push_back(static_cast<unsigned int> (rand() % 256));
colors.push_back(static_cast<unsigned int> (rand() % 256));
colored_cloud->width = cloud_plane->width;
colored_cloud->height = cloud_plane->height;
colored_cloud->is_dense = cloud_plane->is_dense;
for (size_t i_point = 0; i_point < cloud_plane->points.size(); i_point++)
{
pcl::PointXYZRGB point;
point.x = *(cloud_plane->points[i_point].data);
point.y = *(cloud_plane->points[i_point].data + 1);
point.z = *(cloud_plane->points[i_point].data + 2);
point.r = colors[0];
point.g = colors[1];
point.b = colors[2];
colored_cloud->points.push_back(point);
}
pcl::io::savePCDFileASCII(filepath2, *colored_cloud);
++i;
}
// Remove the planar inliers, extract the rest
extract.setNegative(true);
extract.filter(*cloud_f);
*cloud_filtered = *cloud_f;
}
}
PCL中RANSAC使用,点云平面检测,显示,存储
最新推荐文章于 2024-02-24 21:51:50 发布