PollardRho大整数分解

#include <iostream>  
#include <stdlib.h>  
#include <string.h>  
#include <algorithm>  
#include <stdio.h>  

const int Times = 10;  
const int N = 5500;  

using namespace std;  
typedef long long LL;  

LL ct, cnt;  
LL fac[N], num[N];  

LL gcd(LL a, LL b)  
{  
    return b? gcd(b, a % b) : a;  
}  

LL multi(LL a, LL b, LL m)  
{  
    LL ans = 0;  
    a %= m;  
    while(b)  
    {  
        if(b & 1)  
        {  
            ans = (ans + a) % m;  
            b--;  
        }  
        b >>= 1;  
        a = (a + a) % m;  
    }  
    return ans;  
}  

LL quick_mod(LL a, LL b, LL m)  
{  
    LL ans = 1;  
    a %= m;  
    while(b)  
    {  
        if(b & 1)  
        {  
            ans = multi(ans, a, m);  
            b--;  
        }  
        b >>= 1;  
        a = multi(a, a, m);  
    }  
    return ans;  
}  

bool Miller_Rabin(LL n)  
{  
    if(n == 2) return true;  
    if(n < 2 || !(n & 1)) return false;  
    LL m = n - 1;  
    int k = 0;  
    while((m & 1) == 0)  
    {  
        k++;  
        m >>= 1;  
    }  
    for(int i=0; i<Times; i++)  
    {  
        LL a = rand() % (n - 1) + 1;  
        LL x = quick_mod(a, m, n);  
        LL y = 0;  
        for(int j=0; j<k; j++)  
        {  
            y = multi(x, x, n);  
            if(y == 1 && x != 1 && x != n - 1) return false;  
            x = y;  
        }  
        if(y != 1) return false;  
    }  
    return true;  
}  

LL pollard_rho(LL n, LL c)  
{  
    LL i = 1, k = 2;  
    LL x = rand() % (n - 1) + 1;  
    LL y = x;  
    while(true)  
    {  
        i++;  
        x = (multi(x, x, n) + c) % n;  
        LL d = gcd((y - x + n) % n, n);  
        if(1 < d && d < n) return d;  
        if(y == x) return n;  
        if(i == k)  
        {  
            y = x;  
            k <<= 1;  
        }  
    }  
}  

void find(LL n, int c)  
{  
    if(n == 1) return;  
    if(Miller_Rabin(n))  
    {  
        fac[ct++] = n;  
        return ;  
    }  
    LL p = n;  
    LL k = c;  
    while(p >= n) p = pollard_rho(p, c--);  
    find(p, k);  
    find(n / p, k);  
}  

int main()  
{  
    LL n;  
    while(cin>>n)  
    {  
        ct = 0;  
        find(n, 120);  
        sort(fac, fac + ct);  
        num[0] = 1;  
        int k = 1;  
        for(int i=1; i<ct; i++)  
        {  
            if(fac[i] == fac[i-1])  
                ++num[k-1];  
            else  
            {  
                num[k] = 1;  
                fac[k++] = fac[i];  
            }  
        }  
        cnt = k;  
        for(int i=0; i<cnt; i++)  
            cout<<fac[i]<<"^"<<num[i]<<" ";  
        cout<<endl;  
    }  
    return 0;  
}  

import java.math.BigInteger;
import java.security.SecureRandom;

class PollardRho
{
    private final static BigInteger ZERO = new BigInteger("0");
    private final static BigInteger ONE  = new BigInteger("1");
    private final static BigInteger TWO  = new BigInteger("2");
    private final static SecureRandom random = new SecureRandom();

    public static BigInteger rho(BigInteger N) 
    {
        BigInteger divisor;
        BigInteger c  = new BigInteger(N.bitLength(), random);
        BigInteger x  = new BigInteger(N.bitLength(), random);
        BigInteger xx = x;

        if (N.mod(TWO).compareTo(ZERO) == 0) return TWO;

        do 
        {
            x  =  x.multiply(x).mod(N).add(c).mod(N);
            xx = xx.multiply(xx).mod(N).add(c).mod(N);
            xx = xx.multiply(xx).mod(N).add(c).mod(N);
            divisor = x.subtract(xx).gcd(N);
        } while((divisor.compareTo(ONE)) == 0);

        return divisor;
    }

    public static void factor(BigInteger N) 
    {
        if (N.compareTo(ONE) == 0) return;
        if (N.isProbablePrime(20)) 
        { 
            System.out.println(N); 
            return; 
        }
        BigInteger divisor = rho(N);
        factor(divisor);
        factor(N.divide(divisor));
    }

    public static void main(String[] args) 
    {
        BigInteger N = BigInteger.valueOf(120);
        factor(N);
    }
}

相关题目

poj2429

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值