数字滤波器:原理、特性与应用
1. 数字滤波器概述
滤波是对信号进行处理,从而改变其频谱内容的操作。通常,这种改变意味着减少或滤除一些不需要的输入频谱分量。滤波器允许某些频率通过,同时衰减其他频率。模拟滤波器处理连续时间信号,而数字滤波器则处理离散采样值序列。
尽管数字滤波器和模拟滤波器有许多相同的功能,但它们是不同的。不过,这两类滤波器也有很多相同或类似的特性。在学习过程中,我们一般先学习模拟滤波器,再学习数字滤波器。为了更轻松地进入数字领域,我们会强调这两类滤波器的相似性。这是因为模拟滤波器比数字滤波器更具体,我们可以触摸到模拟滤波器的组件,如电容器、电感器、电阻器、运算放大器和电线。而数字滤波器只是一组对数字数组进行算术运算的指令,这些运算可以是加权和或内积。执行这些运算的指令可以作为软件存储在计算机或微处理器中,也可以作为固件存储在相互连接的硬件元件集合中。
2. 模拟滤波器与数字滤波器的相似性
许多模拟滤波器由集总线性元件相互连接而成,这些元件可建模为理想的电容器、电感器和电阻器,还有一些由电阻器、电容器和运算放大器相互连接而成。采样数据滤波器则由寄存器、加法器和乘法器相互连接而成。
大多数模拟滤波器的设计满足线性时不变微分方程所定义的关系,这些微分方程是递归的,这意味着初始条件时域响应(即齐次或无驱动响应)是指数衰减正弦波的加权和。大多数采样数据滤波器的设计满足线性时不变差分方程。这里我们可以看到模拟滤波器和数字滤波器的第一个主要区别:采样数据滤波器的差分方程可以是递归的,也可以是非递归的。当差分方程选择为递归时,初始条件响应与模拟滤波器一样,是指数衰减正弦波加权和的样本。而当差分方程是非递归时,初始条件响应可以是设计者想要
超级会员免费看
订阅专栏 解锁全文

1万+

被折叠的 条评论
为什么被折叠?



