A Tutorial on Graph-Based SLAM笔记

本文详细介绍了图基Simultaneous Localization And Mapping (SLAM)的基本概念,包括图结构中的节点(机器人在不同位置的姿势)、边(来自观测或运动动作的姿势间约束),以及解决SLAM问题的前后端任务。前端负责图构建,后端负责图优化,通过最小化误差来估计机器人轨迹和环境地图。此外,文章还讨论了滤波和平滑两种SLAM解决方案,以及在实际2D地图构建中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Tutorial on Graph-Based SLAM

Cyrill Stachniss Wolfram Burgard

  • A graph

    • Node: The poses of the robot at different points
    • Edges: Constraints between the poses. Obtained from observations or movement actions
      • a probability distribution over a relative transformations between two pose nodes
      • eg odometry measurement, aligning observations from two robot locations.
      • Include data association problem. included in front-end.
    • tasks of pose graph slam
      • Graph construction (Front-end)
      • Graph optimization (Back-end)
  • Solutions for SLAM

    Estimating the robot trajectory and the map of environment.

    • Filtering: on-line state estimation of current robot position and the map
    • Smoothing: estimate the full trajectory from full set of measurements.
  • Solving a large error minimization problem to find a configuration of the graph (trajectory) that is maximally consistent with the measurement.
    min⁡x∑&lt;i,j&gt;∈CeijTΩijeij \min_{x}{\sum _{&lt;i,j&gt;\in C } e^T_{ij}\Omega _{ij} e_{ij}}\\ xmin<i,j>CeijTΩijeij
    where
    eij(xi,xj)=zij−z^ij(xi,xj) e_{ij}(x_i, x_j) = z_{ij}-\hat z_{ij}(x_i, x_j)eij(xi,xj)=zijz^ij(xi,xj) and Ωij\Omega _{ij} Ωijis information matrix of a virtual measurement.

    • Solutions

      • Iterative local linearizations: fist order Taylor expansion around the current guess of xxx ( for x is robot pose)

        Some question about sparcse construction and sparse Cholesky factorization.

        Summary: Gauss-Newton plus Cholesky factorization.

        Practical Application: 2D mapping system

      • Least Squares on a Manifold (Lie group?) ( for x is robot transfomation)

        Define a operator map 3D transformation to manifold.

  • Map:

    Map can be parametrized as a set of spatially located landmarks, by dense representations like occupancy grids, surface maps, or by raw sensor measurements.

    • map is different from 3d reconstruction? (3d surface map is reconstruction?)
  • Dynamic Bayesian Network (DBN)

    • A directed graph to describe stochastic process
    • observed variable nodes (like measurements)
    • hidden variable nodes (like robot position state, map)
    • state transition model
    • observation model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值