Fliptile [反转问题][dfs]

本文介绍了一种通过翻转网格中的方格来使所有方格颜色统一的问题,并提供了一个有效的解决方案。采用递归搜索的方式,从第一行开始尝试不同的翻转组合,最终找到最小翻转次数及翻转位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word “IMPOSSIBLE”.

Input

Line 1: Two space-separated integers: M and N
Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

Output

Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

Sample Output

0 0 0 0
1 0 0 1
1 0 0 1
0 0 0 0

解题报告

只要确定第一行,下面的行就都确定了,枚举第一行即可,复杂度o(N*M * 2^N)

//300 MS

#include<stdio.h>
#include<string.h>
#define MAX_N 15
int map[MAX_N][MAX_N];
int tmp_map[MAX_N][MAX_N];
bool vis[MAX_N][MAX_N];
bool tmp_vis[MAX_N][MAX_N];
bool bests[MAX_N][MAX_N];
int M,N,best;
int ox[]={0,-1,0,0,1};
int oy[]={-1,0,0,1,0};

void flag(int Y,int X,int (*P_map)[MAX_N],bool (*P_vis)[MAX_N]){
    for(int i=0;i<5;i++){
        int x=X+ox[i];
        int y=Y+oy[i];
        if(0<=x&&x<N&&0<=y&&y<M)
            P_map[y][x]++;
    }
    P_vis[Y][X]=!P_vis[Y][X];
}

void go(int cnt){
    //初始化
    memset(tmp_vis,0,sizeof(tmp_vis));
    for(int j=0;j<M;j++)
        for(int k=0;k<N;k++)
            tmp_map[j][k]=map[j][k];
    for(int i=0;i<N;i++) tmp_vis[0][i]=vis[0][i];

    for(int j=1;j<M;j++)
        for(int k=0;k<N;k++){
            if(tmp_map[j-1][k]&1)
                flag(j,k,tmp_map,tmp_vis),cnt++;
            if(cnt>=best) return ;
        }
    for(int i=0;i<N;i++)
        if(tmp_map[M-1][i]&1)
            return ;
    if(cnt<best){
        for(int j=0;j<M;j++)
            for(int k=0;k<N;k++)
                bests[j][k]=tmp_vis[j][k];
        best=cnt;
    }
}

void dfs(int x,int cnt){
    if(x==N){
        go(cnt);
        return ;
    }

    dfs(x+1,cnt);

    flag(0,x,map,vis);
    dfs(x+1,cnt+1);
    flag(0,x,map,vis);
}

int main()
{
    while(~scanf("%d%d",&M,&N)){
        memset(vis,0,sizeof(vis));
        for(int j=0;j<M;j++)
            for(int k=0;k<N;k++)
                scanf("%d",&map[j][k]);
        best=0x3f3f3f3f;dfs(0,0);
        if(best!=0x3f3f3f3f)
            for(int j=0;j<M;j++){
                for(int k=0;k<N;k++)
                    printf(k?" %d":"%d",bests[j][k]);
                putchar('\n');
            }
        else puts("IMPOSSIBLE");
    }
    return 0;
}

某神0ms代码
http://blog.youkuaiyun.com/nameofcsdn/article/details/53044010

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值