三个操作:1.把数列的
A[i](i∈[l,r])
变为
φ(A[i])
2.把数列的
A[i](i∈[l,r])
变为
x
3.求
正解是平衡树,线段树也可以。首先把欧拉函数的表打出来。
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXNUM 10000000
#define MAXN 300010
using namespace std;
typedef long long LL;
int phi[MAXNUM+10];
void phi_table()
{
phi[1] = 1;
for(int i = 2; i <= MAXNUM; i++)
{
if(!phi[i])
for(int j = i; j <= MAXNUM; j += i)
{
if(!phi[j]) phi[j] = j;
phi[j] = phi[j]/i*(i-1);
}
}
}
struct tr
{
int l,r;
LL sum,lz;
}tree[MAXN*4];
LL ans;
int a[MAXN],n,m;
void pushup(int i)
{
tree[i].sum = tree[i*2].sum+tree[i*2+1].sum;
if(tree[i*2].lz == tree[i*2+1].lz) tree[i].lz = tree[i*2].lz;
else tree[i].lz = 0;
}
void pushdown(int i)
{
if(tree[i].lz)
{
tree[i*2].sum = (tree[i*2].r-tree[i*2].l+1)*tree[i].lz;
tree[i*2+1].sum = (tree[i*2+1].r-tree[i*2+1].l+1)*tree[i].lz;
tree[i*2].lz = tree[i*2+1].lz = tree[i].lz;
tree[i].lz = 0;
}
}
void build_tree(int i,int l,int r)
{
tree[i].l = l,tree[i].r = r;
if(l == r)
{
tree[i].sum = tree[i].lz = a[l];
return;
}
int mid = (l+r)/2;
build_tree(i*2,l,mid);
build_tree(i*2+1,mid+1,r);
pushup(i);
}
void change(int i,int l,int r)
{
if(tree[i].l == l&&tree[i].r == r)
{
if(tree[i].lz) //相当于一个缩点的操作,当这段区间已经有懒标记,则说明这个区间的数都是相同的,直接对懒标记求欧拉函数
{
tree[i].lz = phi[tree[i].lz];
tree[i].sum = (LL)(r-l+1)*tree[i].lz;
return;
}
pushdown(i);
int mid = (tree[i].l+tree[i].r)/2;
change(i*2,l,mid);
change(i*2+1,mid+1,r);
pushup(i);
return;
}
pushdown(i);
int mid = (tree[i].l+tree[i].r)/2;
if(r <= mid) change(i*2,l,r);
else if(l > mid) change(i*2+1,l,r);
else
{
change(i*2,l,mid);
change(i*2+1,mid+1,r);
}
pushup(i);
}
void update(int i,int l,int r,int val)
{
if(tree[i].l == l&&tree[i].r == r)
{
tree[i].lz = val;
tree[i].sum = (LL)(r-l+1)*val;
return;
}
pushdown(i);
int mid = (tree[i].l+tree[i].r)/2;
if(r <= mid) update(i*2,l,r,val);
else if(l > mid) update(i*2+1,l,r,val);
else
{
update(i*2,l,mid,val);
update(i*2+1,mid+1,r,val);
}
pushup(i);
}
void query(int i,int l,int r)
{
if(tree[i].l == l&&tree[i].r == r)
{
ans += tree[i].sum;
return;
}
pushdown(i);
int mid = (tree[i].l+tree[i].r)/2;
if(r <= mid) query(i*2,l,r);
else if(l > mid) query(i*2+1,l,r);
else
{
query(i*2,l,mid);
query(i*2+1,mid+1,r);
}
pushup(i);
}
void init()
{
memset(tree,0,sizeof tree);
memset(a,0,sizeof a);
}
int main()
{
phi_table();
int T,op,l,r,x;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d%d",&n,&m);
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
build_tree(1,1,n);
for(int i = 1; i <= m; i++)
{
scanf("%d",&op);
if(op == 1)
{
scanf("%d%d",&l,&r);
change(1,l,r);
}
else if(op == 2)
{
scanf("%d%d%d",&l,&r,&x);
update(1,l,r,x);
}
else
{
ans = 0;
scanf("%d%d",&l,&r);
query(1,l,r);
cout<<ans<<endl;
}
}
}
}