说明
本代码实现尚有很大不足,最终分类的正确率仅能达到78.25%,且迭代次数过多(100次) 或 不对数据进行任何处理 或 将所有特征均用minmax的方法归一化 的情况下,都会导致测试集的所有分类均为0,原因尚不明,恳请读者指正。
另外,本代码未划分验证集,等有新思路再一并修改。
代码
# -*- coding:utf-8 -*-
import numpy as np
import pandas as pd
def data_processing():
dfx = pd.read_csv('X_train.csv')
dfy = pd.read_csv('Y_train.csv')
x_data = np.array(dfx, dtype='float')
x_data[:, 1] /= np.mean(x_data[:, 1])
y_data = np.array(dfy)
return x_data, y_data
def sigmoid(x, bias, weight):
return 1.0/(1.0+np.exp(-bias-x.dot(weight.T)))
def gradient_descent(x_data, y_data):
epoch = 10
lr = 1
bias = 0.0
weight = np.zeros(len(x_data[0]))
sum_b, sum_w = 0.0, 0.0
for i in range(epoch):
grad_b = 0.0
grad_w = np.zeros(len(x_data[0]))
for j in range(len(x_data)):
grad_b += (y_data[j]-sigmoid(x_data[j], bias, weight))*(-1)
grad_w += (y_data[j]-sigmoid(x_data[j], bias, weight))*(-x_data[j])
# 取平均,防止计算溢出
grad_w /= len(x_data)
grad_b /= len(x_data)
# adagraad
sum_b += grad_b**2
sum_w += grad_w.dot(grad_w.T)
bias -= lr/np.sqrt(sum_b) * grad_b
weight -= lr/np.sqrt(sum_w) * grad_w
return bias, weight
def test_model(bias, weight):
df = pd.read_csv('X_test.csv')
# df = pd.read_csv('X_train.csv')
res = []
x_test = np.array(df)
for i in range(len(x_test)):
if sigmoid(x_test[i], bias, weight) >= 0.5:
res.append(1)
else:
res.append(0)
return res
def count_precision(res):
df = pd.read_csv('correct_answer.csv', usecols=[1])
# df = pd.read_csv('Y_train.csv')
temp = np.array(df)
sum = 0.0
for i in range(len(temp)):
sum += np.abs(res[i]-temp[i])
print('total loss: ', float(sum/len(temp)))
print('model precision: ', float(1-sum/len(temp)))
if __name__ == '__main__':
x_data, y_data = data_processing()
bias, weight = gradient_descent(x_data, y_data)
res = test_model(bias, weight)
count_precision(res)
另外,附上逻辑回归实现与运算/或运算的代码
# -*- coding:utf-8 -*-
import numpy as np
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
if __name__ == '__main__':
x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
# 单层神经网络实现逻辑或运算
y = np.array([[0], [1], [1], [1]])
# 如果实现的是与运算,将上面改为 y = np.array([[0], [0], [0], [1]])
epochs = 1000
learning_rate = 1.0
w = np.ones(2)
b = 0.0
sum_w, sum_b = 0.0, 0.0
for i in range(epochs):
w_grad = np.zeros(2)
b_grad = 0.0
for j in range(len(x)):
w_grad += (y[j] - sigmoid(w.dot(x[j])+b)) * (-x[j])
b_grad += (y[j] - sigmoid(w.dot(x[j])+b)) * (-1)
w_grad /= len(x)
b_grad /= len(x)
# adagrad
sum_w += w_grad**2
sum_b += b_grad**2
w -= learning_rate/np.sqrt(sum_w) * w_grad
b -= learning_rate/np.sqrt(sum_b) * b_grad
# test
res = []
for i in range(len(x)):
t = sigmoid(w.dot(x[i])+b)
flag = 1
if t < 0.5:
flag = 0
t = 1 - t
print('input:', x[i], ' output:', flag, 'probability:%.6f'% float(t))
结果: