李宏毅 机器学习 回归demo
李宏毅老师的课件里没有附上回归demo的code,经过整理后如下:
import numpy as np
import matplotlib.pyplot as plt
x_data=[338.,333.,328.,207.,226.,25.,170.,60.,208.,606.]
y_data=[640.,633.,619.,393.,428.,27.,193.,66.,226.,1591.]
x=np.arange(-200,-100,1)#bias
y=np.arange(-5,5,0.1)#weight
z=np.zeros((len(x),len(y)))
X,Y = np.meshgrid(x,y)
for i in range(len(x)):
for j in range(len(y)):
b=x[i]
w=y[j]
z[j][i] = 0
for n in range(len(x_data)):
z[j][i] = z[j][i] + (y_data[n] -b -w*x_data[n])**2
z[j][i] = z[j][i]/len(x_data)
#ydata = b + w*xdata
b = -120 #initial b
w = -4
lr = 0.0000001 #learning rate
iteration = 1000000
#store initial values for plotting.
b_history = [b]
w_history = [w]
#iteration
for i in range(iteration):
b_grad = 0.0
w_grad = 0.0
for n in range(len(x_data)):
b_grad = b_grad - 2.0*(y_data[n] - b - w*x_data[n])*1.0
w_grad = w_grad - 2.0*(y_data[n] - b - w*x_data[n])*x_data[n]
#updata parameters
b = b - lr*b_grad
w = w