QR分解法(QR decomposition)

QR分解将m乘n矩阵A分解为正交矩阵Q和上三角矩阵R的乘积,即A=QR。文章介绍了Householder变换,这是一种找到反射向量u关于与Householder向量v正交的超平面的方法,用于简化QR分解的过程,使得解决Ax=b问题的回代法更加稳定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

QR decomposition divides a m by n matrix AAA into a product of an orthogonal matrix QQQ and an upper triangular matrix RRR:

A=QR A = Q R A=QR

Thus
Ax=b=>QRx=b=>QTQRx=QTb=>Rx=QTb Ax = b => QRx = b => Q^{T}QRx = Q^{T}b => Rx = Q^{T}bAx=b=>QRx=b=>QTQRx=QTb=>Rx=QTb
QR decomposition can be implemented by several algorithms, such as Gram–Schmidt process, Householder transformations, or Givens rotations. Gram-Schmidt procedure is a sequence of multiplications of A from the right by upper triangular matrices. Householde decomposition AAA into QRQRQR with orthogonal matrices. As orthogonal transformations are stable, using Householder triangularization and back-substitution to slove Ax=bAx = bAx=b is backward stable[9][10].

##Householder transformation
Householder transformation reflects a vector uuu about a hyperplane which orthogonal to a vector vvv which is called Householder vector[8].
uf=u−2vvTu u^{f} = u - 2vv^{T}uuf=u2vvTu

The basic idea of Householder reflection for QR decomposition is to find a linear transformation that changes vector uuu into a vector which collinear to eie_{i}ei, uf=∣∣u∣∣eiu^{f} = ||u||e_{i}uf=∣∣u</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值