poj 3744 Scout YYF I (矩阵乘法+概率与期望DP)

Scout YYF I
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8237 Accepted: 2428

Description

YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of  p, or jump two step with a probality of 1- p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

Input

The input contains many test cases ended with  EOF.
Each test case contains two lines.
The First line of each test case is  N (1 ≤  N ≤ 10) and  p (0.25 ≤  p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step.
The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

Output

For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

Sample Input

1 0.5
2
2 0.5
2 4

Sample Output

0.5000000
0.2500000

Source

[Submit]   [Go Back]   [Status]   [Discuss]


题解:矩阵乘法+概率与期望DP

对于不是地雷的位置,我们用矩阵乘法来优化DP

f[i]=f[i-1]*p+f[i-2]*p

对于是地雷的位置x,

f[x+1]=f[x-1]*(1-p)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int n,a[20]; double p;
struct data{
	double a[3][3];
}e,c,f;
void clear(data &a)
{
	for (int i=1;i<=2;i++)
	 for (int j=1;j<=2;j++) a.a[i][j]=e.a[i][j];
}
data mul(data a,data b)
{
	data c;
	for (int i=1;i<=2;i++)
	 for (int j=1;j<=2;j++) {
	 	c.a[i][j]=0;
	 	c.a[i][j]+=a.a[i][1]*b.a[1][j];
	 	c.a[i][j]+=a.a[i][2]*b.a[2][j];
	 }
	return c;
}
data quickpow(data num,int x)
{
	data ans; clear(ans);
	data base; base=num;
	while (x) {
		if (x&1) ans=mul(ans,base);
		x>>=1;
		base=mul(base,base);
	}
	return ans;
}
int main()
{
	freopen("a.in","r",stdin);
//	freopen("my.out","w",stdout);
	for (int i=1;i<=2;i++) e.a[i][i]=1;
	while (scanf("%d%lf",&n,&p)!=EOF) {
	   c.a[1][1]=0; c.a[1][2]=(1.0-p);
	   c.a[2][1]=1; c.a[2][2]=p;
	   f.a[1][1]=0; f.a[1][2]=1;
	   for (int i=1;i<=n;i++) scanf("%d",&a[i]);
	   sort(a+1,a+n+1);
	   if (a[1]==1) {
	   	printf("%.7lf\n",0);
	   	continue;
	   }
	   data ans; a[0]=0; bool pd=false;
	   for (int i=1;i<=n;i++) {
	   	  if (a[i-1]+1==a[i]) {
	   	  	   pd=true;
	   	  	   break;
			 }
	   	  data ans=quickpow(c,a[i]-a[i-1]-2);
	   	  ans=mul(f,ans);
	   	  f.a[1][1]=0; f.a[1][2]=ans.a[1][2]*(1.0-p);
	   }
	   if (!pd)  printf("%.7lf\n",f.a[1][2]);
	   else printf("%.7lf\n",0);
	}
}



POJ 3213 题目是一个关于矩阵乘法的经典计算机科学问题。矩阵乘法通常是线性代数的基础操作,给定两个矩阵 A 和 B,你需要计算它们的乘积 C = A * B,其中每个元素 C[i][j] 是对应位置上 A 的行向量 B 的列向量的点积。 以下是一个简单的 Java 代码示例,使用嵌套循环来实现矩阵乘法: ```java import java.util.Scanner; public class MatrixMultiplication { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); // 输入矩阵的维度 System.out.println("Enter the dimensions of matrix A (m x n):"); int m = scanner.nextInt(); int n = scanner.nextInt(); // 创建矩阵 A 和 B int[][] matrixA = new int[m][n]; int[][] matrixB = new int[n][n]; // 读取矩阵 A 的元素 System.out.println("Enter elements of matrix A:"); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { matrixA[i][j] = scanner.nextInt(); } } // 读取矩阵 B 的元素(假设输入的矩阵都是方阵,大小为 n x n) System.out.println("Enter elements of matrix B:"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { matrixB[i][j] = scanner.nextInt(); } } // 矩阵乘法 int[][] result = new int[m][n]; // 结果矩阵 for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { for (int k = 0; k < n; k++) { // 每次循环k用于遍历B的列 result[i][j] += matrixA[i][k] * matrixB[k][j]; } } } // 输出结果矩阵 System.out.println("Matrix multiplication result:"); for (int[] row : result) { for (int element : row) { System.out.print(element + " "); } System.out.println(); } scanner.close(); } } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值