A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3984 Accepted Submission(s): 2410
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
Sample Output
45 104
Author
linle
Source
Recommend
题解:矩阵优化dp
优化矩阵 :
0 0 0 0 0 0 0 0 0 a9
1 0 0 0 0 0 0 0 0 a8
0 1 0 0 0 0 0 0 0 a7
0 0 1 0 0 0 0 0 0 a6
0 0 0 1 0 0 0 0 0 a5
0 0 0 0 1 0 0 0 0 a4
0 0 0 0 0 1 0 0 0 a3
0 0 0 0 0 0 1 0 0 a2
0 0 0 0 0 0 0 1 0 a1
0 0 0 0 0 0 0 0 1 a0
因为我们初始的矩阵是
{ f(x-9),f(x-8),f(x-7),....,f(x)} 我们要推到下一个状态即{f(x-8),f(x-7),....,f(x),f(x+1)} ,注意乘的时候是用初始矩阵的行×优化矩阵的列,这样我们求出优化矩阵A^(n-9) 乘初始矩阵,得到的初始矩阵的最后一个数就是答案。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 10
using namespace std;
int n,m,p,f[20];
struct data
{
int a[20][20];
}a;
void clear(data &x)
{
for (int i=1;i<=N;i++)
for (int j=1;j<=N;j++)
x.a[i][j]=0;
}
void change(data &a1,data b)
{
for (int i=1;i<=N;i++)
for (int j=1;j<=N;j++)
a1.a[i][j]=b.a[i][j];
}
data mul(data a1,data b)
{
data c;
for (int i=1;i<=N;i++)
for (int j=1;j<=N;j++)
{
c.a[i][j]=0;
for (int k=1;k<=N;k++)
c.a[i][j]=(c.a[i][j]+a1.a[i][k]*b.a[k][j]%p)%p;
}
return c;
}
data pow(data num,int x)
{
data ans; clear(ans);
for (int i=1;i<=N;i++) ans.a[i][i]=1;
data base; clear(base);
change(base,num);
while (x)
{
if (x&1) ans=mul(ans,base);
x>>=1;
base=mul(base,base);
}
return ans;
}
int main()
{
clear(a);
for (int i=2;i<=10;i++)
a.a[i][i-1]=1;
for (int i=1;i<=10;i++)
f[i]=i-1;
while (scanf("%d%d",&n,&p)!=EOF)
{
for (int i=1;i<=10;i++)
scanf("%d",&a.a[N-i+1][10]);
n-=9;
data ans=pow(a,n);
int t[20]; memset(t,0,sizeof(t));
for (int j=1;j<=N;j++)
{
t[j]=0;
for (int k=1;k<=N;k++)
t[j]=(t[j]+f[k]*ans.a[k][j]%p)%p;
}
printf("%d\n",t[10]);
}
}