A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4285 Accepted Submission(s): 2574
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999
1 1 1 1 1 1 1 1 1 1
20 500
1 0 1 0 1 0 1 0 1 0
Sample Output
45
104
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
|f(10) | |a0 a1 a2 …a8 a9| |f(9)|
| f(9) | | 1 0 0 … 0 0 | |f(8)|
| ….. | = | .. … … … | | .. |
| f(2) | | 0 0 0 … 0 0| |f(1)|
| f(1) | | 0 0 0 … 1 0| |f(0)|
另A举证为10*10的举证,如上图。
可以推出:
(f(n),f(n-1),…,f(n-9))^(-1) = A^(n-9)*(f(9),f(8),…,f(0))^(-1)
矩阵~~现代~~~全忘光了~~
AC代码:
#include<bits/stdc++.h>
typedef long long LL;
LL K,mod;
struct node{
int m[12][12];
}in,un;
void init(){ // 矩阵初始化
memset(in.m,0,sizeof(in.m));
memset(un.m,0,sizeof(un.m));
for(int i = 1 ; i <= 9 ; i++)
in.m[i][i - 1] = 1;
for(int i = 0 ; i <= 9 ; i++) // 单位矩阵
un.m[i][i] = 1;
}
node JZ(node a,node b){ // 矩阵运算,构造矩阵 C
node c;
for(int i = 0 ; i <= 9 ; i++)
for(int j = 0 ; j <= 9 ; j++){
c.m[i][j] = 0;
for(int k = 0 ; k <= 9 ; k++)
c.m[i][j] += (a.m[i][k] * b.m[k][j]) % mod;
c.m[i][j] %= mod;
}
return c;
}
node KSM(node a,node b,int x){ // 矩阵快速幂
while(x){
if(x & 1)
b = JZ(a,b);
a = JZ(a,a);
x >>= 1;
}
return b;
}
int main()
{
while(scanf("%lld %lld",&K,&mod) != EOF){
init();
for(int i = 0 ; i <= 9 ; i++)
scanf("%d",&in.m[0][i]);
if(K < 10) printf("%lld\n",K % mod);
else{
node ans = KSM(in,un,K - 9);
LL cut = 0;
for(int i = 0 ; i < 10 ; i++)
cut += (ans.m[0][i] * (9 - i)) % mod;
printf("%lld\n",cut % mod);
}
}
return 0;
}