Time Limit: 3000MS | Memory Limit: 131072K | |
Total Submissions: 18956 | Accepted: 8012 |
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4 0 1 1 1
Sample Output
1 2 2 3
Source
POJ Monthly--2007.06.03, Huang, Jinsong
题目大意:给出一个n*n的矩阵,求矩阵S = A + A2 + A3 + … + Ak
输出对m取模的结果
k的范围是10^9,直接计算时间复杂度十分不合理,所以我们可以通过递归实现时间上的缩短
当k为偶数时,s(k)=(1+A^(k/2))*(A+A^2+…+A^(k/2))
当k为奇数时,s(k)=A+(A+A^(k/2+1))*(A+A^2+…+A^(k/2)
剩下的问题就是一些矩阵的相关运算啦
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n,k,p;
struct data
{
int m[41][41];
};data a,e;//e是单位矩阵,单位矩阵有一个很好的性质A*E=E*A=A
void init(data &x,data y)
{
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
x.m[i][j]=y.m[i][j];
}
data add(data x,data y)//矩阵加法
{
data c;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
c.m[i][j]=0,c.m[i][j]=(x.m[i][j]+y.m[i][j])%p;
return c;
}
data mul(data x,data y)//矩阵乘法
{
data temp;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
{
temp.m[i][j]=0;
for (int k=1;k<=n;k++)
temp.m[i][j]=(temp.m[i][j]%p+(x.m[i][k]*y.m[k][j])%p)%p;
}
return temp;
}
data quickpow(int x)//矩阵快速幂
{
data sum;
memset(sum.m,0,sizeof(sum.m));
for (int i=1;i<=n;i++)
sum.m[i][i]=1;
data num;
init(num,a);
while (x>0)
{
if (x&1)
sum=mul(sum,num);
x=x>>1;
num=mul(num,num);
}
return sum;
}
data solve(int k)
{
if (k==1) return a;
data b=quickpow((k+1)/2);
data c=solve(k/2);
if (k%2)
return add(a,mul(add(a,b),c));
else
return mul(add(e,b),c);
}
int main()
{
scanf("%d%d%d",&n,&k,&p);
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
scanf("%d",&a.m[i][j]);
data ans;
memset(e.m,0,sizeof(e.m));
for (int i=1;i<=n;i++)
e.m[i][i]=1;
ans=solve(k);
for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
printf("%d ",ans.m[i][j]);
printf("\n");
}
}