参考:
LIO-SAM源码阅读与分析(5)--mapOptmization.cpp - 知乎
LIO-SAM源码解析(四):MapOptimization - 知乎
https://blog.youkuaiyun.com/qq_32761549/category_10320716.html?spm=1001.2014.3001.5482
LIO-SAM框架:点云匹配前戏之初值计算及局部地图构建_月照银海似蛟龙的博客-优快云博客_transformtobemapped
LIO-SAM框架:点云配准之角点面点的残差及梯度构建_月照银海似蛟龙的博客-优快云博客_点云梯度
lio-sam框架:点云匹配之手写高斯牛顿下降优化求状态量更新_月照银海似蛟龙的博客-优快云博客
#include "utility.h"
#include "lio_sam/cloud_info.h"
#include "lio_sam/save_map.h" // ROS 服务?
#include <gtsam/geometry/Rot3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/navigation/GPSFactor.h>
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/navigation/CombinedImuFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/nonlinear/Marginals.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/nonlinear/ISAM2.h>
using namespace gtsam;
using symbol_shorthand::X; // Pose3 (x,y,z,r,p,y)
using symbol_shorthand::V; // Vel (xdot,ydot,zdot)
using symbol_shorthand::B; // Bias (ax,ay,az,gx,gy,gz)
using symbol_shorthand::G; // GPS pose
/*
* A point cloud type that has 6D pose info ([x,y,z,roll,pitch,yaw] intensity is time stamp)
*/
struct PointXYZIRPYT
{
PCL_ADD_POINT4D
PCL_ADD_INTENSITY; // preferred way of adding a XYZ+padding
float roll;
float pitch;
float yaw;
double time;
EIGEN_MAKE_ALIGNED_OPERATOR_NEW // make sure our new allocators are aligned
} EIGEN_ALIGN16; // enforce SSE padding for correct memory alignment
POINT_CLOUD_REGISTER_POINT_STRUCT (PointXYZIRPYT,
(float, x, x) (float, y, y)
(float, z, z) (float, intensity, intensity)
(float, roll, roll) (float, pitch, pitch) (float, yaw, yaw)
(double, time, time))
typedef PointXYZIRPYT PointTypePose;
class mapOptimization : public ParamServer
{
public:
// gtsam
NonlinearFactorGraph gtSAMgraph;
Values initialEstimate;
Values optimizedEstimate;
ISAM2 *isam;
Values isamCurrentEstimate;
Eigen::MatrixXd poseCovariance; // 位姿协方差矩阵
ros::Publisher pubLaserCloudSurround;
ros::Publisher pubLaserOdometryGlobal;
ros::Publisher pubLaserOdometryIncremental;
ros::Publisher pubKeyPoses;
ros::Publisher pubPath;
ros::Publisher pubHistoryKeyFrames;
ros::Publisher pubIcpKeyFrames;
ros::Publisher pubRecentKeyFrames;
ros::Publisher pubRecentKeyFrame;
ros::Publisher pubCloudRegisteredRaw;
ros::Publisher pubLoopConstraintEdge; // 可视化回环检测边?
ros::Publisher pubSLAMInfo;
ros::Subscriber subCloud;
ros::Subscriber subGPS;
ros::Subscriber subLoop; // 这个程序没用到,没有外界回环检测的器件
ros::ServiceServer srvSaveMap; // 保存地图的服务
std::deque<nav_msgs::Odometry> gpsQueue;
lio_sam::cloud_info cloudInfo;
// 历史所有关键帧的角点集合(降采样)
vector<pcl::PointCloud<PointType>::Ptr> cornerCloudKeyFrames;
// 历史所有关键帧的平面点集合(降采样)
vector<pcl::PointCloud<PointType>::Ptr> surfCloudKeyFrames;
/*3D 和 6D?*/
pcl::PointCloud<PointType>::Ptr cloudKeyPoses3D; // 历史关键帧(位置)存的xyz 关键帧的位置
pcl::PointCloud<PointTypePose>::Ptr cloudKeyPoses6D; // 历史关键帧位姿 xyz RPY
pcl::PointCloud<PointType>::Ptr copy_cloudKeyPoses3D;
pcl::PointCloud<PointTypePose>::Ptr copy_cloudKeyPoses6D;
pcl::PointCloud<PointType>::Ptr laserCloudCornerLast; // corner feature set from odoOptimization 角点集合
pcl::PointCloud<PointType>::Ptr laserCloudSurfLast; // surf feature set from odoOptimization 平面点集合
pcl::PointCloud<PointType>::Ptr laserCloudCornerLastDS; // downsampled corner feature set from odoOptimization 角点降采样
pcl::PointCloud<PointType>::Ptr laserCloudSurfLastDS; // downsampled surf feature set from odoOptimization 平面点降采样
// 当前帧与局部map匹配上了的角点、平面点,加入同一集合;后面是对应点的参数
pcl::PointCloud<PointType>::Ptr laserCloudOri;
pcl::PointCloud<PointType>::Ptr coeffSel;
std::vector<PointType> laserCloudOriCornerVec; // corner point holder for parallel computation
std::vector<PointType> coeffSelCornerVec;
std::vector<bool> laserCloudOriCornerFlag;
std::vector<PointType> laserCloudOriSurfVec; // surf point holder for parallel computation
std::vector<PointType> coeffSelSurfVec;
std::vector<bool> laserCloudOriSurfFlag;
// 保存 地图 容器,first角点,second 平面点
map<int, pair<pcl::PointCloud<PointType>, pcl::PointCloud<PointType>>> laserCloudMapContainer;
pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMap; // 局部map的角点集合
pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMap; // 局部map的平面点集合
pcl::PointCloud<PointType>::Ptr laserCloudCornerFromMapDS; // 局部map的角点集合,降采样
pcl::PointCloud<PointType>::Ptr laserCloudSurfFromMapDS; // 局部map的平面点集合,降采样
// 局部关键帧构建的map点云,对应kdtree,用于scan-to-map找相邻点
pcl::KdTreeFLANN<PointType>::Ptr kdtreeCornerFromMap;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurfFromMap;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeSurroundingKeyPoses;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeHistoryKeyPoses;
// 降采样
pcl::VoxelGrid<PointType> downSizeFilterCorner;
pcl::VoxelGrid<PointType> downSizeFilterSurf;
pcl::VoxelGrid<PointType> downSizeFilterICP; // 这个是干嘛的?
pcl::VoxelGrid<PointType> downSizeFilterSurroundingKeyPoses; // for surrounding key poses of scan-to-map optimization
// laserCloudInfoHandler回调函数中记录 当前信息的时间戳
ros::Time timeLaserInfoStamp; // stamp
double timeLaserInfoCur; // stamp.toSec()
// 当前帧的位姿:六个值,按顺序分别存放 欧拉角RPY,位置xyz
float transformTobeMapped[6];
std::mutex mtx;
std::mutex mtxLoopInfo;
bool isDegenerate = false;
cv::Mat matP;
int laserCloudCornerFromMapDSNum = 0; // 局部map角点数量
int laserCloudSurfFromMapDSNum = 0; // 局部map平面点数量
int laserCloudCornerLastDSNum = 0; // 当前激光帧角点数量
int laserCloudSurfLastDSNum = 0; // 当前激光帧面点数量
bool aLoopIsClosed = false;
map<int, int> loopIndexContainer; // from new to old
vector<pair<int, int>> loopIndexQueue;
vector<gtsam::Pose3> loopPoseQueue;
vector<gtsam::noiseModel::Diagonal::shared_ptr> loopNoiseQueue;
deque<std_msgs::Float64MultiArray> loopInfoVec;
nav_msgs::Path globalPath;
Eigen::Affine3f transPointAssociateToMap;
Eigen::Affine3f incrementalOdometryAffineFront;
Eigen::Affine3f incrementalOdometryAffineBack;
mapOptimization()
{
// iSAM2 参数
ISAM2Params parameters;
parameters.relinearizeThreshold = 0.1;
parameters.relinearizeSkip = 1;
isam = new ISAM2(parameters);
// 发布历史关键帧里程计
pubKeyPoses = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/trajectory", 1);
// 发布局部关键帧map的特征点云
pubLaserCloudSurround = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_global", 1);
// 发布激光里程计,rviz中表现为坐标轴
pubLaserOdometryGlobal = nh.advertise<nav_msgs::Odometry> ("lio_sam/mapping/odometry", 1);
// 发布激光里程计,它与上面的激光里程计基本一样,只是roll、pitch用imu数据加权平均了一下,z做了限制
pubLaserOdometryIncremental = nh.advertise<nav_msgs::Odometry> ("lio_sam/mapping/odometry_incremental", 1);
// 发布激光里程计路径,rviz中表现为载体的运行轨迹
pubPath = nh.advertise<nav_msgs::Path>("lio_sam/mapping/path", 1);
// 订阅当前激光帧点云信息,来自featureExtraction
subCloud = nh.subscribe<lio_sam::cloud_info>("lio_sam/feature/cloud_info", 1, &mapOptimization::laserCloudInfoHandler, this, ros::TransportHints().tcpNoDelay());
// 订阅GPS里程计
subGPS = nh.subscribe<nav_msgs::Odometry> (gpsTopic, 200, &mapOptimization::gpsHandler, this, ros::TransportHints().tcpNoDelay());
// 订阅来自外部闭环检测程序提供的闭环数据,本程序没有提供,这里实际没用上
subLoop = nh.subscribe<std_msgs::Float64MultiArray>("lio_loop/loop_closure_detection", 1, &mapOptimization::loopInfoHandler, this, ros::TransportHints().tcpNoDelay());
// 发布地图保存服务
srvSaveMap = nh.advertiseService("lio_sam/save_map", &mapOptimization::saveMapService, this);
// 发布闭环匹配关键帧局部map
pubHistoryKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_history_cloud", 1);
// 发布当前关键帧经过闭环优化后的位姿变换之后的特征点云
pubIcpKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/icp_loop_closure_corrected_cloud", 1);
// 发布闭环边,rviz中表现为闭环帧之间的连线
pubLoopConstraintEdge = nh.advertise<visualization_msgs::MarkerArray>("/lio_sam/mapping/loop_closure_constraints", 1);
// 发布局部map的降采样平面点集合
pubRecentKeyFrames = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/map_local", 1);
// 发布历史帧(累加的)的角点、平面点降采样集合
pubRecentKeyFrame = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered", 1);
// 发布当前帧原始点云配准之后的点云
pubCloudRegisteredRaw = nh.advertise<sensor_msgs::PointCloud2>("lio_sam/mapping/cloud_registered_raw", 1);
pubSLAMInfo = nh.advertise<lio_sam::cloud_info>("lio_sam/mapping/slam_info", 1);
downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
downSizeFilterICP.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
downSizeFilterSurroundingKeyPoses.setLeafSize(surroundingKeyframeDensity, surroundingKeyframeDensity, surroundingKeyframeDensity); // for surrounding key poses of scan-to-map optimization
allocateMemory();
}
void allocateMemory()
{
cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
copy_cloudKeyPoses3D.reset(new pcl::PointCloud<PointType>());
copy_cloudKeyPoses6D.reset(new pcl::PointCloud<PointTypePose>());
kdtreeSurroundingKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
kdtreeHistoryKeyPoses.reset(new pcl::KdTreeFLANN<PointType>());
laserCloudCornerLast.reset(new pcl::PointCloud<PointType>()); // corner feature set from odoOptimization
laserCloudSurfLast.reset(new pcl::PointCloud<PointType>()); // surf feature set from odoOptimization
laserCloudCornerLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled corner featuer set from odoOptimization
laserCloudSurfLastDS.reset(new pcl::PointCloud<PointType>()); // downsampled surf featuer set from odoOptimization
laserCloudOri.reset(new pcl::PointCloud<PointType>());
coeffSel.reset(new pcl::PointCloud<PointType>());
laserCloudOriCornerVec.resize(N_SCAN * Horizon_SCAN);
coeffSelCornerVec.resize(N_SCAN * Horizon_SCAN);
laserCloudOriCornerFlag.resize(N_SCAN * Horizon_SCAN);
laserCloudOriSurfVec.resize(N_SCAN * Horizon_SCAN);
coeffSelSurfVec.resize(N_SCAN * Horizon_SCAN);
laserCloudOriSurfFlag.resize(N_SCAN * Horizon_SCAN);
std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false); //初始值 false
std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
laserCloudCornerFromMap.reset(new pcl::PointCloud<PointType>());
laserCloudSurfFromMap.reset(new pcl::PointCloud<PointType>());
laserCloudCornerFromMapDS.reset(new pcl::PointCloud<PointType>());
laserCloudSurfFromMapDS.reset(new pcl::PointCloud<PointType>());
kdtreeCornerFromMap.reset(new pcl::KdTreeFLANN<PointType>());
kdtreeSurfFromMap.reset(new pcl::KdTreeFLANN<PointType>());
for (int i = 0; i < 6; ++i){
transformTobeMapped[i] = 0;
}
matP = cv::Mat(6, 6, CV_32F, cv::Scalar::all(0));
}
/**
* 订阅当前激光帧点云信息,来自featureExtraction
*/
void laserCloudInfoHandler(const lio_sam::cloud_infoConstPtr& msgIn)
{
// extract time stamp
// 时间戳
timeLaserInfoStamp = msgIn->header.stamp;
timeLaserInfoCur = msgIn->header.stamp.toSec();
// extract info and feature cloud
cloudInfo = *msgIn;
pcl::fromROSMsg(msgIn->cloud_corner, *laserCloudCornerLast);
pcl::fromROSMsg(msgIn->cloud_surface, *laserCloudSurfLast);
std::lock_guard<std::mutex> lock(mtx);
static double timeLastProcessing = -1;
if (timeLaserInfoCur - timeLastProcessing >= mappingProcessInterval) // mappingProcessInterval 0.15
{
timeLastProcessing = timeLaserInfoCur;
// 1. 当前帧位姿初始化
updateInitialGuess();
// 2. 提取局部角点、平面点云集合,加入局部map
extractSurroundingKeyFrames();
// 3. 当前激光帧角点、平面点集合降采样
downsampleCurrentScan();
// 4. scan-to-map优化当前帧位姿
/**
* 上面1,2两步: 激光雷达当前帧有了初值的估计,那么则可以利用初值投到地图坐标系下,并构建了局部地图
* 有了上面两步,就可以构建角点和面点的 残差、梯度方向
* 【其中残差就是点到直线/面 的距离,方向就是距离缩小的方向】
*/
scan2MapOptimization();
// 5. 设置当前帧为关键帧并执行因子图优化
saveKeyFramesAndFactor();
// 6. 更新因子图中所有变量节点的位姿,也就是所有历史关键帧的位姿,更新里程计轨迹
correctPoses();
// 7. 发布激光里程计
publishOdometry();
// 8. 发布里程计、点云、轨迹
publishFrames();
}
}
void gpsHandler(const nav_msgs::Odometry::ConstPtr& gpsMsg)
{
gpsQueue.push_back(*gpsMsg);
}
/**
* 转到地图坐标系
*/
void pointAssociateToMap(PointType const * const pi, PointType * const po)
{
// 变换矩阵是在 updatePointAssociateToMap() 函数中得到的
po->x = transPointAssociateToMap(0,0) * pi->x + transPointAssociateToMap(0,1) * pi->y + transPointAssociateToMap(0,2) * pi->z + transPointAssociateToMap(0,3);
po->y = transPointAssociateToMap(1,0) * pi->x + transPointAssociateToMap(1,1) * pi->y + transPointAssociateToMap(1,2) * pi->z + transPointAssociateToMap(1,3);
po->z = transPointAssociateToMap(2,0) * pi->x + transPointAssociateToMap(2,1) * pi->y + transPointAssociateToMap(2,2) * pi->z + transPointAssociateToMap(2,3);
po->intensity = pi->intensity;
}
pcl::PointCloud<PointType>::Ptr transformPointCloud(pcl::PointCloud<PointType>::Ptr cloudIn, PointTypePose* transformIn)
{
pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
int cloudSize = cloudIn->size();
// cloudOut 大小与 cloudIn相同
cloudOut->resize(cloudSize);
// 变换矩阵
Eigen::Affine3f transCur = pcl::getTransformation(transformIn->x, transformIn->y, transformIn->z, transformIn->roll, transformIn->pitch, transformIn->yaw);
#pragma omp parallel for num_threads(numberOfCores)
for (int i = 0; i < cloudSize; ++i)
{
const auto &pointFrom = cloudIn->points[i];
cloudOut->points[i].x = transCur(0,0) * pointFrom.x + transCur(0,1) * pointFrom.y + transCur(0,2) * pointFrom.z + transCur(0,3);
cloudOut->points[i].y = transCur(1,0) * pointFrom.x + transCur(1,1) * pointFrom.y + transCur(1,2) * pointFrom.z + transCur(1,3);
cloudOut->points[i].z = transCur(2,0) * pointFrom.x + transCur(2,1) * pointFrom.y + transCur(2,2) * pointFrom.z + transCur(2,3);
cloudOut->points[i].intensity = pointFrom.intensity;
}
return cloudOut;
}
gtsam::Pose3 pclPointTogtsamPose3(PointTypePose thisPoint)
{
return gtsam::Pose3(gtsam::Rot3::RzRyRx(double(thisPoint.roll), double(thisPoint.pitch), double(thisPoint.yaw)),
gtsam::Point3(double(thisPoint.x), double(thisPoint.y), double(thisPoint.z)));
}
gtsam::Pose3 trans2gtsamPose(float transformIn[])
{
return gtsam::Pose3(gtsam::Rot3::RzRyRx(transformIn[0], transformIn[1], transformIn[2]),
gtsam::Point3(transformIn[3], transformIn[4], transformIn[5]));
}
Eigen::Affine3f pclPointToAffine3f(PointTypePose thisPoint)
{
return pcl::getTransformation(thisPoint.x, thisPoint.y, thisPoint.z, thisPoint.roll, thisPoint.pitch, thisPoint.yaw);
}
/**
* Eigen::Affine3f getTransformation (1,2,3,4,5,6)
* 根据欧拉角平移矩阵生成变换矩阵
* 参数顺序是 float x; float y; float z; float roll; float pitch; float yaw;
*/
Eigen::Affine3f trans2Affine3f(float transformIn[])
{
return pcl::getTransformation(transformIn[3], transformIn[4], transformIn[5], transformIn[0], transformIn[1], transformIn[2]);
}
PointTypePose trans2PointTypePose(float transformIn[])
{
PointTypePose thisPose6D;
thisPose6D.x = transformIn[3];
thisPose6D.y = transformIn[4];
thisPose6D.z = transformIn[5];
thisPose6D.roll = transformIn[0];
thisPose6D.pitch = transformIn[1];
thisPose6D.yaw = transformIn[2];
return thisPose6D;
}
bool saveMapService(lio_sam::save_mapRequest& req, lio_sam::save_mapResponse& res)
{
string saveMapDirectory;
cout << "****************************************************" << endl;
cout << "Saving map to pcd files ..." << endl;
if(req.destination.empty()) saveMapDirectory = std::getenv("HOME") + savePCDDirectory;
else saveMapDirectory = std::getenv("HOME") + req.destination;
cout << "Save destination: " << saveMapDirectory << endl;
// create directory and remove old files;
int unused = system((std::string("exec rm -r ") + saveMapDirectory).c_str());
unused = system((std::string("mkdir -p ") + saveMapDirectory).c_str());
// save key frame transformations
pcl::io::savePCDFileBinary(saveMapDirectory + "/trajectory.pcd", *cloudKeyPoses3D);
pcl::io::savePCDFileBinary(saveMapDirectory + "/transformations.pcd", *cloudKeyPoses6D);
// extract global point cloud map
pcl::PointCloud<PointType>::Ptr globalCornerCloud(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalCornerCloudDS(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalSurfCloud(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalSurfCloudDS(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalMapCloud(new pcl::PointCloud<PointType>());
for (int i = 0; i < (int)cloudKeyPoses3D->size(); i++) {
*globalCornerCloud += *transformPointCloud(cornerCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);
*globalSurfCloud += *transformPointCloud(surfCloudKeyFrames[i], &cloudKeyPoses6D->points[i]);
cout << "\r" << std::flush << "Processing feature cloud " << i << " of " << cloudKeyPoses6D->size() << " ...";
}
if(req.resolution != 0)
{
cout << "\n\nSave resolution: " << req.resolution << endl;
// down-sample and save corner cloud
downSizeFilterCorner.setInputCloud(globalCornerCloud);
downSizeFilterCorner.setLeafSize(req.resolution, req.resolution, req.resolution);
downSizeFilterCorner.filter(*globalCornerCloudDS);
pcl::io::savePCDFileBinary(saveMapDirectory + "/CornerMap.pcd", *globalCornerCloudDS);
// down-sample and save surf cloud
downSizeFilterSurf.setInputCloud(globalSurfCloud);
downSizeFilterSurf.setLeafSize(req.resolution, req.resolution, req.resolution);
downSizeFilterSurf.filter(*globalSurfCloudDS);
pcl::io::savePCDFileBinary(saveMapDirectory + "/SurfMap.pcd", *globalSurfCloudDS);
}
else
{
// save corner cloud
pcl::io::savePCDFileBinary(saveMapDirectory + "/CornerMap.pcd", *globalCornerCloud);
// save surf cloud
pcl::io::savePCDFileBinary(saveMapDirectory + "/SurfMap.pcd", *globalSurfCloud);
}
// save global point cloud map
*globalMapCloud += *globalCornerCloud;
*globalMapCloud += *globalSurfCloud;
int ret = pcl::io::savePCDFileBinary(saveMapDirectory + "/GlobalMap.pcd", *globalMapCloud);
res.success = ret == 0;
downSizeFilterCorner.setLeafSize(mappingCornerLeafSize, mappingCornerLeafSize, mappingCornerLeafSize);
downSizeFilterSurf.setLeafSize(mappingSurfLeafSize, mappingSurfLeafSize, mappingSurfLeafSize);
cout << "****************************************************" << endl;
cout << "Saving map to pcd files completed\n" << endl;
return true;
}
/**
* 可视化全局地图的 线程
*/
void visualizeGlobalMapThread()
{
ros::Rate rate(0.2);
while (ros::ok()){
rate.sleep();
publishGlobalMap();
}
if (savePCD == false)
return;
lio_sam::save_mapRequest req;
lio_sam::save_mapResponse res;
if(!saveMapService(req, res)){
cout << "Fail to save map" << endl;
}
}
void publishGlobalMap()
{
if (pubLaserCloudSurround.getNumSubscribers() == 0)
return;
if (cloudKeyPoses3D->points.empty() == true)
return;
pcl::KdTreeFLANN<PointType>::Ptr kdtreeGlobalMap(new pcl::KdTreeFLANN<PointType>());;
pcl::PointCloud<PointType>::Ptr globalMapKeyPoses(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalMapKeyPosesDS(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalMapKeyFrames(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr globalMapKeyFramesDS(new pcl::PointCloud<PointType>());
// kd-tree to find near key frames to visualize
std::vector<int> pointSearchIndGlobalMap;
std::vector<float> pointSearchSqDisGlobalMap;
// search near key frames to visualize
mtx.lock();
kdtreeGlobalMap->setInputCloud(cloudKeyPoses3D);
kdtreeGlobalMap->radiusSearch(cloudKeyPoses3D->back(), globalMapVisualizationSearchRadius, pointSearchIndGlobalMap, pointSearchSqDisGlobalMap, 0);
mtx.unlock();
for (int i = 0; i < (int)pointSearchIndGlobalMap.size(); ++i)
globalMapKeyPoses->push_back(cloudKeyPoses3D->points[pointSearchIndGlobalMap[i]]);
// downsample near selected key frames
pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyPoses; // for global map visualization
downSizeFilterGlobalMapKeyPoses.setLeafSize(globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity, globalMapVisualizationPoseDensity); // for global map visualization
downSizeFilterGlobalMapKeyPoses.setInputCloud(globalMapKeyPoses);
downSizeFilterGlobalMapKeyPoses.filter(*globalMapKeyPosesDS);
for(auto& pt : globalMapKeyPosesDS->points)
{
kdtreeGlobalMap->nearestKSearch(pt, 1, pointSearchIndGlobalMap, pointSearchSqDisGlobalMap);
pt.intensity = cloudKeyPoses3D->points[pointSearchIndGlobalMap[0]].intensity;
}
// extract visualized and downsampled key frames
for (int i = 0; i < (int)globalMapKeyPosesDS->size(); ++i){
if (pointDistance(globalMapKeyPosesDS->points[i], cloudKeyPoses3D->back()) > globalMapVisualizationSearchRadius)
continue;
int thisKeyInd = (int)globalMapKeyPosesDS->points[i].intensity;
*globalMapKeyFrames += *transformPointCloud(cornerCloudKeyFrames[thisKeyInd], &cloudKeyPoses6D->points[thisKeyInd]);
*globalMapKeyFrames += *transformPointCloud(surfCloudKeyFrames[thisKeyInd], &cloudKeyPoses6D->points[thisKeyInd]);
}
// downsample visualized points
pcl::VoxelGrid<PointType> downSizeFilterGlobalMapKeyFrames; // for global map visualization
downSizeFilterGlobalMapKeyFrames.setLeafSize(globalMapVisualizationLeafSize, globalMapVisualizationLeafSize, globalMapVisualizationLeafSize); // for global map visualization
downSizeFilterGlobalMapKeyFrames.setInputCloud(globalMapKeyFrames);
downSizeFilterGlobalMapKeyFrames.filter(*globalMapKeyFramesDS);
publishCloud(pubLaserCloudSurround, globalMapKeyFramesDS, timeLaserInfoStamp, odometryFrame);
}
/**
* 在点云匹配之后,可以来看回环检测部分的代码了
* 这部分的代码入口在 main函数中,单独开了一个回环检测的线程
*/
void loopClosureThread()
{
// 如果不需要进行回环检测,那么就退出这个线程, 需不需要可以在配置文件中设置
if (loopClosureEnableFlag == false)
return;
// 设置回环检测的频率 loopClosureFrequency默认为 1hz ,没有必要太频繁
ros::Rate rate(loopClosureFrequency);
/**
* 设置完频率后,进行一个while的 死循环。
* 执行完一次就必须sleep一段时间,否则该线程的cpu占用会非常高
* 通过performLoopClosure(), visualizeLoopClosure() 执行回环检测
*/
while (ros::ok())
{
rate.sleep();
performLoopClosure();
visualizeLoopClosure();
}
}
/**
* 订阅来自外部的 回环,这里用不到
*/
void loopInfoHandler(const std_msgs::Float64MultiArray::ConstPtr& loopMsg)
{
std::lock_guard<std::mutex> lock(mtxLoopInfo);
if (loopMsg->data.size() != 2)
return;
loopInfoVec.push_back(*loopMsg);
while (loopInfoVec.size() > 5)
loopInfoVec.pop_front();
}
/**
* 回环检测线程
*/
void performLoopClosure()
{
// 如果没有关键帧,就没法进行回环检测了 就直接退出
if (cloudKeyPoses3D->points.empty() == true)
return;
mtx.lock();
// 把存储关键帧位姿 的 点云copy出来,避免线程冲突
// cloudKeyPoses3D就是关键帧的位置 cloudKeyPoses6D就是关键帧的位姿
*copy_cloudKeyPoses3D = *cloudKeyPoses3D;
*copy_cloudKeyPoses6D = *cloudKeyPoses6D;
mtx.unlock();
// find keys
int loopKeyCur;
int loopKeyPre;
// 首先看一下外部通知的回环信息 (外部检测回环 好像没有)
if (detectLoopClosureExternal(&loopKeyCur, &loopKeyPre) == false)
// 然后根据里程计的距离来检测回环, 如果还没有则直接返回
if (detectLoopClosureDistance(&loopKeyCur, &loopKeyPre) == false)
return;
// 如果检测回环存在!!!
// 那么则可以进行下面内容,就是计算检测出这两帧的位姿变换
// extract cloud
pcl::PointCloud<PointType>::Ptr cureKeyframeCloud(new pcl::PointCloud<PointType>()); // 声明当前关键帧的点云
pcl::PointCloud<PointType>::Ptr prevKeyframeCloud(new pcl::PointCloud<PointType>()); // 声明历史回环帧周围的点云(局部地图)
{
loopFindNearKeyframes(cureKeyframeCloud, loopKeyCur, 0);
// 回环帧把自己周围一些点云取出来,也就是构成一个帧局部地图的一个匹配问题
loopFindNearKeyframes(prevKeyframeCloud, loopKeyPre, historyKeyframeSearchNum);
// 点云数目太少,返回
if (cureKeyframeCloud->size() < 300 || prevKeyframeCloud->size() < 1000)
return;
// 把局部地图发布出来供rviz可视化使用
if (pubHistoryKeyFrames.getNumSubscribers() != 0)
publishCloud(pubHistoryKeyFrames, prevKeyframeCloud, timeLaserInfoStamp, odometryFrame);
}
// 现在有了当前 关键帧投到地图坐标系下的点云 和 历史回环帧投到地图坐标系下的局部地图,那么接下来就可以进行两者的icp位姿变换求解
// ** 关键帧点云 和 历史回环帧点云 进行 ICP 配准 **
// ICP Settings
static pcl::IterativeClosestPoint<PointType, PointType> icp;
// 使用简单的icp来进行帧到局部地图的配准
icp.setMaxCorrespondenceDistance(historyKeyframeSearchRadius*2); // 设置最大相关距离
icp.setMaximumIterations(100); // 最大优化次数
icp.setTransformationEpsilon(1e-6); // 单次变换范围
icp.setEuclideanFitnessEpsilon(1e-6); // 残差设置
icp.setRANSACIterations(0);
// Align clouds
// 设置两个点云
icp.setInputSource(cureKeyframeCloud); // 源点云
icp.setInputTarget(prevKeyframeCloud); // 目标点云
// 执行配准
pcl::PointCloud<PointType>::Ptr unused_result(new pcl::PointCloud<PointType>());
icp.align(*unused_result);
// 检测icp是否收敛 且 得分是否满足要求
if (icp.hasConverged() == false || icp.getFitnessScore() > historyKeyframeFitnessScore) // 0.3
return;
// publish corrected cloud
// 把修正后的当前点云发布供可视化使用
if (pubIcpKeyFrames.getNumSubscribers() != 0)
{
pcl::PointCloud<PointType>::Ptr closed_cloud(new pcl::PointCloud<PointType>());
pcl::transformPointCloud(*cureKeyframeCloud, *closed_cloud, icp.getFinalTransformation());
publishCloud(pubIcpKeyFrames, closed_cloud, timeLaserInfoStamp, odometryFrame);
}
// Get pose transformation
float x, y, z, roll, pitch, yaw;
Eigen::Affine3f correctionLidarFrame;
// 获得两个点云的变换矩阵结果
correctionLidarFrame = icp.getFinalTransformation(); // 两个点云之间的变换矩阵
// transform from world origin to wrong pose
Eigen::Affine3f tWrong = pclPointToAffine3f(copy_cloudKeyPoses6D->points[loopKeyCur]); // 取出当前帧的位姿
// transform from world origin to corrected pose
Eigen::Affine3f tCorrect = correctionLidarFrame * tWrong;// 将icp结果补偿过去,就是当前帧的更为准确的位姿结果pre-multiplying -> successive rotation about a fixed frame
// 将当前帧补偿后的位姿 转换成 平移和旋转
pcl::getTranslationAndEulerAngles (tCorrect, x, y, z, roll, pitch, yaw);
// 将当前帧补偿后的位姿 转换成 gtsam的形式, From 和 To相当于帧间约束的因子,To是历史回环帧的位姿
gtsam::Pose3 poseFrom = Pose3(Rot3::RzRyRx(roll, pitch, yaw), Point3(x, y, z));
gtsam::Pose3 poseTo = pclPointTogtsamPose3(copy_cloudKeyPoses6D->points[loopKeyPre]);
// 使用icp的得分作为他们的约束噪声项
gtsam::Vector Vector6(6);
float noiseScore = icp.getFitnessScore();
Vector6 << noiseScore, noiseScore, noiseScore, noiseScore, noiseScore, noiseScore;
noiseModel::Diagonal::shared_ptr constraintNoise = noiseModel::Diagonal::Variances(Vector6);
// Add pose constraint
// 将两帧索引,两帧相对位姿和噪声作为回环约束 送入对列
mtx.lock();
loopIndexQueue.push_back(make_pair(loopKeyCur, loopKeyPre));
loopPoseQueue.push_back(poseFrom.between(poseTo));
loopNoiseQueue.push_back(constraintNoise);
mtx.unlock();
// add loop constriant
// 保存已经存在的约束对
loopIndexContainer[loopKeyCur] = loopKeyPre;
}
/**
* 根据里程计的距离来检测回环
*/
bool detectLoopClosureDistance(int *latestID, int *closestID)
{
// 检测最新帧是否和其它帧形成回环
// 取出最新帧的索引
int loopKeyCur = copy_cloudKeyPoses3D->size() - 1;
int loopKeyPre = -1;
// check loop constraint added before
// 检查一下较晚帧是否和别的形成了回环,如果有就算了
// 因为当前帧刚刚出现,不会和其它帧形成回环,所以基本不会触发
auto it = loopIndexContainer.find(loopKeyCur);
if (it != loopIndexContainer.end())
return false;
// find the closest history key frame
std::vector<int> pointSearchIndLoop;
std::vector<float> pointSearchSqDisLoop;
// 把只包含关键帧位移信息的点云填充kdtree
kdtreeHistoryKeyPoses->setInputCloud(copy_cloudKeyPoses3D);
// 根据最后一个关键帧的平移信息,寻找离他一定距离内的其它关键帧
kdtreeHistoryKeyPoses->radiusSearch(copy_cloudKeyPoses3D->back(), historyKeyframeSearchRadius,
pointSearchIndLoop, pointSearchSqDisLoop, 0);
// historyKeyframeSearchRadius 搜索范围10米
// 遍历找到的候选关键帧
for (int i = 0; i < (int)pointSearchIndLoop.size(); ++i)
{
int id = pointSearchIndLoop[i];
// 历史帧,必须比当前帧间隔30s以上 必须满足时间上超过一定阈值,才认为是一个有效的回环
if (abs(copy_cloudKeyPoses6D->points[id].time - timeLaserInfoCur) > historyKeyframeSearchTimeDiff) // historyKeyframeSearchTimeDiff = 30
{
loopKeyPre = id;
break;
}
// 如果时间上满足要求就找到了历史回环帧
// 那么赋值id 并且 break
}
// 如果没有找到回环或者回环找到自己身上去了,就认为是本次回环寻找失败
if (loopKeyPre == -1 || loopKeyCur == loopKeyPre)
return false;
// 至此则找到了当前关键帧 和 历史回环帧
// 赋值当前帧 和 历史回环帧的 id
*latestID = loopKeyCur; // 当前帧
*closestID = loopKeyPre; // 回环帧
return true;
}
bool detectLoopClosureExternal(int *latestID, int *closestID)
{
// this function is not used yet, please ignore it
int loopKeyCur = -1;
int loopKeyPre = -1;
std::lock_guard<std::mutex> lock(mtxLoopInfo);
if (loopInfoVec.empty())
return false;
double loopTimeCur = loopInfoVec.front().data[0];
double loopTimePre = loopInfoVec.front().data[1];
loopInfoVec.pop_front();
if (abs(loopTimeCur - loopTimePre) < historyKeyframeSearchTimeDiff)
return false;
int cloudSize = copy_cloudKeyPoses6D->size();
if (cloudSize < 2)
return false;
// latest key
loopKeyCur = cloudSize - 1;
for (int i = cloudSize - 1; i >= 0; --i)
{
if (copy_cloudKeyPoses6D->points[i].time >= loopTimeCur)
loopKeyCur = round(copy_cloudKeyPoses6D->points[i].intensity);
else
break;
}
// previous key
loopKeyPre = 0;
for (int i = 0; i < cloudSize; ++i)
{
if (copy_cloudKeyPoses6D->points[i].time <= loopTimePre)
loopKeyPre = round(copy_cloudKeyPoses6D->points[i].intensity);
else
break;
}
if (loopKeyCur == loopKeyPre)
return false;
auto it = loopIndexContainer.find(loopKeyCur);
if (it != loopIndexContainer.end())
return false;
*latestID = loopKeyCur;
*closestID = loopKeyPre;
return true;
}
void loopFindNearKeyframes(pcl::PointCloud<PointType>::Ptr& nearKeyframes, const int& key, const int& searchNum)
{
// extract near keyframes
nearKeyframes->clear();
int cloudSize = copy_cloudKeyPoses6D->size();
// searchNum 是搜索范围 ,遍历帧的范围 [-searchNum, +searchNum]
for (int i = -searchNum; i <= searchNum; ++i)
{
// 找到这个 idx
int keyNear = key + i;
// 如果超出范围了就算了
if (keyNear < 0 || keyNear >= cloudSize )
continue;
// 把对应 角点和面点 的点云转到世界坐标系下去
*nearKeyframes += *transformPointCloud(cornerCloudKeyFrames[keyNear], ©_cloudKeyPoses6D->points[keyNear]);
*nearKeyframes += *transformPointCloud(surfCloudKeyFrames[keyNear], ©_cloudKeyPoses6D->points[keyNear]);
}
// 没有有效点云
if (nearKeyframes->empty())
return;
// 点云下采样
// downsample near keyframes
pcl::PointCloud<PointType>::Ptr cloud_temp(new pcl::PointCloud<PointType>());
downSizeFilterICP.setInputCloud(nearKeyframes);
downSizeFilterICP.filter(*cloud_temp);
*nearKeyframes = *cloud_temp;
}
void visualizeLoopClosure()
{
if (loopIndexContainer.empty())
return;
visualization_msgs::MarkerArray markerArray;
// loop nodes
visualization_msgs::Marker markerNode;
markerNode.header.frame_id = odometryFrame;
markerNode.header.stamp = timeLaserInfoStamp;
markerNode.action = visualization_msgs::Marker::ADD;
markerNode.type = visualization_msgs::Marker::SPHERE_LIST;
markerNode.ns = "loop_nodes";
markerNode.id = 0;
markerNode.pose.orientation.w = 1;
markerNode.scale.x = 0.3; markerNode.scale.y = 0.3; markerNode.scale.z = 0.3;
markerNode.color.r = 0; markerNode.color.g = 0.8; markerNode.color.b = 1;
markerNode.color.a = 1;
// loop edges
visualization_msgs::Marker markerEdge;
markerEdge.header.frame_id = odometryFrame;
markerEdge.header.stamp = timeLaserInfoStamp;
markerEdge.action = visualization_msgs::Marker::ADD;
markerEdge.type = visualization_msgs::Marker::LINE_LIST;
markerEdge.ns = "loop_edges";
markerEdge.id = 1;
markerEdge.pose.orientation.w = 1;
markerEdge.scale.x = 0.1;
markerEdge.color.r = 0.9; markerEdge.color.g = 0.9; markerEdge.color.b = 0;
markerEdge.color.a = 1;
for (auto it = loopIndexContainer.begin(); it != loopIndexContainer.end(); ++it)
{
int key_cur = it->first;
int key_pre = it->second;
geometry_msgs::Point p;
p.x = copy_cloudKeyPoses6D->points[key_cur].x;
p.y = copy_cloudKeyPoses6D->points[key_cur].y;
p.z = copy_cloudKeyPoses6D->points[key_cur].z;
markerNode.points.push_back(p);
markerEdge.points.push_back(p);
p.x = copy_cloudKeyPoses6D->points[key_pre].x;
p.y = copy_cloudKeyPoses6D->points[key_pre].y;
p.z = copy_cloudKeyPoses6D->points[key_pre].z;
markerNode.points.push_back(p);
markerEdge.points.push_back(p);
}
markerArray.markers.push_back(markerNode);
markerArray.markers.push_back(markerEdge);
pubLoopConstraintEdge.publish(markerArray);
}
/**
* 1、如果是第一帧,用原始imu数据的RPY初始化当前帧位姿(旋转部分)
* 2、后续帧,用imu里程计计算两帧之间的增量位姿变换,作用于前一帧的激光位姿,得到当前帧激光位姿
*/
void updateInitialGuess()
{
// save current transformation before any processing
// 前一帧的位姿,注:这里指lidar的位姿,后面都简写成位姿
incrementalOdometryAffineFront = trans2Affine3f(transformTobeMapped);
// 前一帧的初始化姿态角(来自原始imu数据),用于估计第一帧的位姿(旋转部分)
static Eigen::Affine3f lastImuTransformation;
// initialization
// 如果关键帧集合为空,继续进行初始化
if (cloudKeyPoses3D->points.empty())
{
// 当前帧位姿的旋转部分,用激光帧信息中的RPY(来自imu原始数据)初始化
transformTobeMapped[0] = cloudInfo.imuRollInit;
transformTobeMapped[1] = cloudInfo.imuPitchInit;
transformTobeMapped[2] = cloudInfo.imuYawInit;
if (!useImuHeadingInitialization)
transformTobeMapped[2] = 0;
// 保存旋转变换
lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
return;
}
// use imu pre-integration estimation for pose guess
// 用 当前帧 和 前一帧 对应的imu里程计 计算 相对位姿变换,
// 再用 前一帧的位姿与相对变换,计算当前帧的位姿,存 transformTobeMapped
static bool lastImuPreTransAvailable = false;
static Eigen::Affine3f lastImuPreTransformation;
if (cloudInfo.odomAvailable == true)
{
// 在imageProjection.cpp中的 函数odomDeskewInfo() 里面定义的 initialGuessX等
Eigen::Affine3f transBack = pcl::getTransformation(cloudInfo.initialGuessX, cloudInfo.initialGuessY, cloudInfo.initialGuessZ,
cloudInfo.initialGuessRoll, cloudInfo.initialGuessPitch, cloudInfo.initialGuessYaw);
if (lastImuPreTransAvailable == false)
{
// // 赋值给前一帧
lastImuPreTransformation = transBack;
lastImuPreTransAvailable = true;
} else {
// 当前帧相对于前一帧的位姿变换,imu里程计计算得到
Eigen::Affine3f transIncre = lastImuPreTransformation.inverse() * transBack;
// 前一帧的位姿
Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
// 当前帧的位姿 最终的变换 利用该变换给transformTobeMapped赋值
Eigen::Affine3f transFinal = transTobe * transIncre;
// 根据仿射矩阵transFinal 计算 x,y,z,roll,pitch,yaw [存在精度缺失问题]
pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5],
transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
// 赋值给前一帧
lastImuPreTransformation = transBack;
// 保存旋转变换
lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
return;
}
}
// use imu incremental estimation for pose guess (only rotation)
// 只在第一帧调用(注意上面的return),用imu数据初始化当前帧位姿,仅初始化旋转部分
if (cloudInfo.imuAvailable == true)
{
Eigen::Affine3f transBack = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit);
// 当前帧相对于前一帧的位姿变换
Eigen::Affine3f transIncre = lastImuTransformation.inverse() * transBack;
Eigen::Affine3f transTobe = trans2Affine3f(transformTobeMapped);
// 当前帧的位姿 最终的变换
Eigen::Affine3f transFinal = transTobe * transIncre;
// 根据仿射矩阵transFinal 计算 x,y,z,roll,pitch,yaw [存在精度缺失问题]
pcl::getTranslationAndEulerAngles(transFinal, transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5],
transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
// 保存旋转变换
lastImuTransformation = pcl::getTransformation(0, 0, 0, cloudInfo.imuRollInit, cloudInfo.imuPitchInit, cloudInfo.imuYawInit); // save imu before return;
return;
}
}
// 这个函数没用到
void extractForLoopClosure()
{
pcl::PointCloud<PointType>::Ptr cloudToExtract(new pcl::PointCloud<PointType>());
int numPoses = cloudKeyPoses3D->size();
for (int i = numPoses-1; i >= 0; --i)
{
if ((int)cloudToExtract->size() <= surroundingKeyframeSize)
cloudToExtract->push_back(cloudKeyPoses3D->points[i]);
else
break;
}
extractCloud(cloudToExtract);
}
//提取周围的关键帧
void extractNearby()
{
pcl::PointCloud<PointType>::Ptr surroundingKeyPoses(new pcl::PointCloud<PointType>()); //保存附近关键帧
pcl::PointCloud<PointType>::Ptr surroundingKeyPosesDS(new pcl::PointCloud<PointType>()); // 保存关键帧下采样之后的点 以及时间上相近的关键帧
// 临时变量 KD 树搜索的时候使用
std::vector<int> pointSearchInd;
std::vector<float> pointSearchSqDis;
/**
* extract all the nearby key poses and downsample them
*/
// kdtree的输入,全局关键帧位姿集合(历史所有关键帧集合)
kdtreeSurroundingKeyPoses->setInputCloud(cloudKeyPoses3D); // create kd-tree
// 对最近的一帧关键帧,在半径区域内搜索[radiusSearch]空间区域上相邻的关键帧集合
// surroundingKeyframeSearchRadius搜索半径是 50米
kdtreeSurroundingKeyPoses->radiusSearch(cloudKeyPoses3D->back(), (double)surroundingKeyframeSearchRadius,
pointSearchInd, pointSearchSqDis);
// 将半径搜索查询的结果保存到 surroundingKeyPoses() 空间上近的关键帧
for (int i = 0; i < (int)pointSearchInd.size(); ++i)
{
int id = pointSearchInd[i];
surroundingKeyPoses->push_back(cloudKeyPoses3D->points[id]);
}
// 对查询结果进行 下采样处理【目的:避免关键帧过多】
downSizeFilterSurroundingKeyPoses.setInputCloud(surroundingKeyPoses);
downSizeFilterSurroundingKeyPoses.filter(*surroundingKeyPosesDS);
/**
* 这一段 for 循环的含义:确认每个下采样后的点的索引
*/
for(auto& pt : surroundingKeyPosesDS->points)
{
kdtreeSurroundingKeyPoses->nearestKSearch(pt, 1, pointSearchInd, pointSearchSqDis);
pt.intensity = cloudKeyPoses3D->points[pointSearchInd[0]].intensity;
}
// also extract some latest key frames in case the robot rotates in one position
// 刚刚是提取了一些空间上比较近的关键帧,然后再提取一些时间上比较近的关键帧
int numPoses = cloudKeyPoses3D->size();
for (int i = numPoses-1; i >= 0; --i)
{
// 最近十秒的关键帧也保存下来
if (timeLaserInfoCur - cloudKeyPoses6D->points[i].time < 10.0)
surroundingKeyPosesDS->push_back(cloudKeyPoses3D->points[i]);
else
break;
}
//根据筛选出来的关键帧进行局部地图构建
extractCloud(surroundingKeyPosesDS);
}
// 根据筛选出来的关键帧进行局部地图构建, 作为scan-to-map匹配的局部点云地图
void extractCloud(pcl::PointCloud<PointType>::Ptr cloudToExtract)
{
// fuse the map
laserCloudCornerFromMap->clear(); // 角点 局部地图
laserCloudSurfFromMap->clear(); // 平面点 局部地图
// 遍历关键帧
for (int i = 0; i < (int)cloudToExtract->size(); ++i)
{
// pointDistance(a,b)计算两点距离,校验一下关键帧距离不能太远, 不能超过搜索半径 50
if (pointDistance(cloudToExtract->points[i], cloudKeyPoses3D->back()) > surroundingKeyframeSearchRadius)
continue;
// 取出提出来的关键帧的索引
int thisKeyInd = (int)cloudToExtract->points[i].intensity;
// 如果这个关键帧对应的点云信息已经存储在一个地图容器里 直接从容器中取出来加到局部地图中
if (laserCloudMapContainer.find(thisKeyInd) != laserCloudMapContainer.end())
{
// transformed cloud available
// 直接容器中取出,添加到局部地图
*laserCloudCornerFromMap += laserCloudMapContainer[thisKeyInd].first;
*laserCloudSurfFromMap += laserCloudMapContainer[thisKeyInd].second;
} else {
// transformed cloud not available
// 如果这个点云没有实现存储,那就通过该帧对应的位姿,把该帧点云从当前帧的位姿转到世界坐标系下
pcl::PointCloud<PointType> laserCloudCornerTemp = *transformPointCloud(cornerCloudKeyFrames[thisKeyInd],
&cloudKeyPoses6D->points[thisKeyInd]);
pcl::PointCloud<PointType> laserCloudSurfTemp = *transformPointCloud(surfCloudKeyFrames[thisKeyInd],
&cloudKeyPoses6D->points[thisKeyInd]);
// 添加到局部点云图
*laserCloudCornerFromMap += laserCloudCornerTemp;
*laserCloudSurfFromMap += laserCloudSurfTemp;
// 保存到容器中,第一个是角点,第二个是平面点
laserCloudMapContainer[thisKeyInd] = make_pair(laserCloudCornerTemp, laserCloudSurfTemp);
}
}
/**
* 将提取的关键帧的点云转到世界坐标系下后,避免点云过度密集,因此对面点和角点的局部地图做一个采样的过程
*/
// Downsample the surrounding corner key frames (or map)
downSizeFilterCorner.setInputCloud(laserCloudCornerFromMap);
downSizeFilterCorner.filter(*laserCloudCornerFromMapDS);
laserCloudCornerFromMapDSNum = laserCloudCornerFromMapDS->size();
// Downsample the surrounding surf key frames (or map)
downSizeFilterSurf.setInputCloud(laserCloudSurfFromMap);
downSizeFilterSurf.filter(*laserCloudSurfFromMapDS);
laserCloudSurfFromMapDSNum = laserCloudSurfFromMapDS->size();
// clear map cache if too large
// 如果这个局部地图容器过大,就clear一下,避免占用内存过大
if (laserCloudMapContainer.size() > 1000)
laserCloudMapContainer.clear();
}
/**
* 提取周围关键帧 extractNearby() , 并根据筛选出来的关键帧进行局部地图构建 extractCloud(surroundingKeyPosesDS)
*/
void extractSurroundingKeyFrames()
{
if (cloudKeyPoses3D->points.empty() == true)
return;
// if (loopClosureEnableFlag == true)
// {
// extractForLoopClosure();
// } else {
// extractNearby();
// }
// 提取关键帧
extractNearby();
}
void downsampleCurrentScan()
{
// 对 laserCloudInfoHandler 回调函数接收的 平面点 和 角点进行降采样处理
// Downsample cloud from current scan
laserCloudCornerLastDS->clear();
downSizeFilterCorner.setInputCloud(laserCloudCornerLast);
downSizeFilterCorner.filter(*laserCloudCornerLastDS);
laserCloudCornerLastDSNum = laserCloudCornerLastDS->size();
laserCloudSurfLastDS->clear();
downSizeFilterSurf.setInputCloud(laserCloudSurfLast);
downSizeFilterSurf.filter(*laserCloudSurfLastDS);
laserCloudSurfLastDSNum = laserCloudSurfLastDS->size();
}
void updatePointAssociateToMap()
{
// 当前帧的仿射变换矩阵,这个矩阵可用来 将点投影到 地图【pointAssociateToMap()】
transPointAssociateToMap = trans2Affine3f(transformTobeMapped);
}
void cornerOptimization()
{
// 将当前帧的先验位姿(初值估计那来的) 将欧拉角转成eigen的形式
updatePointAssociateToMap();
#pragma omp parallel for num_threads(numberOfCores)
// 遍历当前帧的角点
// downsampleCurrentScan() 中下采样之后的角点 点数量,保存到laserCloudCornerLastDSNum
for (int i = 0; i < laserCloudCornerLastDSNum; i++)
{
PointType pointOri, pointSel, coeff;
// kd树近邻搜索的时候使用的
std::vector<int> pointSearchInd; //在points[] 中的下标索引
std::vector<float> pointSearchSqDis; // 距离
// 临时变量,保存当前点
pointOri = laserCloudCornerLastDS->points[i];
// 将该点从当前帧通过初始的位姿变换到地图坐标系下去
pointAssociateToMap(&pointOri, &pointSel);
// 在角点地图里面寻找距离当前点比较近的5个点
kdtreeCornerFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);
cv::Mat matA1(3, 3, CV_32F, cv::Scalar::all(0)); // 协方差矩阵
cv::Mat matD1(1, 3, CV_32F, cv::Scalar::all(0)); // 协方差矩阵的特征值
cv::Mat matV1(3, 3, CV_32F, cv::Scalar::all(0)); // 协方差矩阵的特征向量
// 计算找到的点中距离当前点最远的点,如果距离太大那说明这个约束不可信,就跳过
// 合适的距离小于 1 米
if (pointSearchSqDis[4] < 1.0) {
// 计算找到的5个点的均值
float cx = 0, cy = 0, cz = 0;
for (int j = 0; j < 5; j++) {
cx += laserCloudCornerFromMapDS->points[pointSearchInd[j]].x;
cy += laserCloudCornerFromMapDS->points[pointSearchInd[j]].y;
cz += laserCloudCornerFromMapDS->points[pointSearchInd[j]].z;
}
cx /= 5; cy /= 5; cz /= 5;
// 计算协方差矩阵
// [xx xy xz]
//P = [yx yy yz]
// [zx zy zz]
// 协方差值:
// xx = 1/n * 【(x1-x平均数)*(x1-x平均数) + (x2-x平均数)*(x2-x平均数) + ... + (xn-x平均数)*(xn-x平均数)】
// xy = 1/n * 【(x1-x平均数)*(y1-y平均数) + (x2-x平均数)*(y2-y平均数) + ... + (xn-x平均数)*(yn-y平均数)】
// 其他的以此类推
// 其中 xy = yx, xz = zx, yz = zy
// 最终得到
// [a11 a12 a13]
//A1 = [a12 a22 a23]
// [a13 a23 a33]
float a11 = 0, a12 = 0, a13 = 0, a22 = 0, a23 = 0, a33 = 0;
for (int j = 0; j < 5; j++) {
float ax = laserCloudCornerFromMapDS->points[pointSearchInd[j]].x - cx;
float ay = laserCloudCornerFromMapDS->points[pointSearchInd[j]].y - cy;
float az = laserCloudCornerFromMapDS->points[pointSearchInd[j]].z - cz;
a11 += ax * ax; a12 += ax * ay; a13 += ax * az;
a22 += ay * ay; a23 += ay * az;
a33 += az * az;
}
a11 /= 5; a12 /= 5; a13 /= 5; a22 /= 5; a23 /= 5; a33 /= 5;
matA1.at<float>(0, 0) = a11; matA1.at<float>(0, 1) = a12; matA1.at<float>(0, 2) = a13;
matA1.at<float>(1, 0) = a12; matA1.at<float>(1, 1) = a22; matA1.at<float>(1, 2) = a23;
matA1.at<float>(2, 0) = a13; matA1.at<float>(2, 1) = a23; matA1.at<float>(2, 2) = a33;
//
//
// cv::eigen(InputArray src, OutputArray eigenvalues, OutputArray eigenvectors)
// 得到 特征值eigenvalues【排列从大到小】,特征向量 eigenvectors
//
// 特征值分解 为 证明这5个点是一条直线,
cv::eigen(matA1, matD1, matV1);
// 要求 最大 特征值 大于3倍的次大特征值 --> 线特征
if (matD1.at<float>(0, 0) > 3 * matD1.at<float>(0, 1)) {
//
// 点到直线距离:
// 点O(x0, y0, z0) ,
// 两点确定一条直线:A(x1, y1, z1) B(x2, y2, z2)
//
// 当前点转换到地图坐标系下的点
float x0 = pointSel.x;
float y0 = pointSel.y;
float z0 = pointSel.z;
// 进行了一个直线的构建, 通过点的均值往两边拓展(加 减 特征向量对应的值)
// **最大特征值 对应的 特征向量 对应的就是直线的方向向量**
float x1 = cx + 0.1 * matV1.at<float>(0, 0);
float y1 = cy + 0.1 * matV1.at<float>(0, 1);
float z1 = cz + 0.1 * matV1.at<float>(0, 2);
float x2 = cx - 0.1 * matV1.at<float>(0, 0);
float y2 = cy - 0.1 * matV1.at<float>(0, 1);
float z2 = cz - 0.1 * matV1.at<float>(0, 2);
//
//现在有了 一个点,和构建的两个点,
//下面要求整个点到构建的两个点形成直线的距离和方向,即残差与残差方向
//
float a012 = sqrt(((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1)) * ((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1))
+ ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1)) * ((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1))
+ ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)) * ((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1)));
// 这个就是AB的模长
float l12 = sqrt((x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2) + (z1 - z2)*(z1 - z2));
float la = ((y1 - y2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1))
+ (z1 - z2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1))) / a012 / l12;
float lb = -((x1 - x2)*((x0 - x1)*(y0 - y2) - (x0 - x2)*(y0 - y1))
- (z1 - z2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;
float lc = -((x1 - x2)*((x0 - x1)*(z0 - z2) - (x0 - x2)*(z0 - z1))
+ (y1 - y2)*((y0 - y1)*(z0 - z2) - (y0 - y2)*(z0 - z1))) / a012 / l12;
// 求距离 也就是残差,根据三角形面积
float ld2 = a012 / l12;
// 一个简单的核函数 , 残差越大 权重 越 低
float s = 1 - 0.9 * fabs(ld2);
// 残差 x y z 代表方向 intensity 为大小
coeff.x = s * la;
coeff.y = s * lb;
coeff.z = s * lc;
coeff.intensity = s * ld2;
// 如果残差da于10cm,就认为是一个有效的约束
if (s > 0.1) {
laserCloudOriCornerVec[i] = pointOri;
coeffSelCornerVec[i] = coeff;
laserCloudOriCornerFlag[i] = true;
}
}
}
}
}
// 平面点优化
void surfOptimization()
{
// 同理角点优化
// 将当前帧的先验位姿(初值估计那来的) 将欧拉角转成eigen的形式
updatePointAssociateToMap();
#pragma omp parallel for num_threads(numberOfCores)
// 遍历当前帧每个面点
for (int i = 0; i < laserCloudSurfLastDSNum; i++)
{
PointType pointOri, pointSel, coeff;
std::vector<int> pointSearchInd;
std::vector<float> pointSearchSqDis;
// 取出 该点
pointOri = laserCloudSurfLastDS->points[i];
// 将该点从当前帧通过初始的位姿变换到地图坐标系下去
pointAssociateToMap(&pointOri, &pointSel);
// 在平面点地图里面寻找距离当前点比较近的5个点
kdtreeSurfFromMap->nearestKSearch(pointSel, 5, pointSearchInd, pointSearchSqDis);
// 下面不是通过特征值分解 来求特征向量的 通过超定方程来求解
// 求解 Ax = b 中的 x?,下面的三个变量分别对应方程中的 A b x
Eigen::Matrix<float, 5, 3> matA0;
Eigen::Matrix<float, 5, 1> matB0;
Eigen::Vector3f matX0;
//平面方程 Ax + By + Cz + 1 = 0
matA0.setZero();
matB0.fill(-1);
matX0.setZero();
// 最大距离不能超过1m
if (pointSearchSqDis[4] < 1.0) {
// 填充 matA0 矩阵
for (int j = 0; j < 5; j++) {
matA0(j, 0) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].x;
matA0(j, 1) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].y;
matA0(j, 2) = laserCloudSurfFromMapDS->points[pointSearchInd[j]].z;
}
//
// QR 分解
// 求解 Ax = b 这个超定方程
//
matX0 = matA0.colPivHouseholderQr().solve(matB0);
// 求出来x的就是这个平面的法向量
float pa = matX0(0, 0);
float pb = matX0(1, 0);
float pc = matX0(2, 0);
float pd = 1;
// 单位化 ---> 单位法向量
float ps = sqrt(pa * pa + pb * pb + pc * pc);
pa /= ps; pb /= ps; pc /= ps; pd /= ps;
bool planeValid = true;
// 将每个点代入平面方程,计算点到平面的距离,如果距离大于0.2m,认为这个平面曲率偏大,就是无效的平面
for (int j = 0; j < 5; j++) {
if (fabs(pa * laserCloudSurfFromMapDS->points[pointSearchInd[j]].x +
pb * laserCloudSurfFromMapDS->points[pointSearchInd[j]].y +
pc * laserCloudSurfFromMapDS->points[pointSearchInd[j]].z + pd) > 0.2) {
planeValid = false;
break;
}
}
// 如果 平面是有效的,
if (planeValid) {
// 计算残差,点到平面的距离 --> pd2
float pd2 = pa * pointSel.x + pb * pointSel.y + pc * pointSel.z + pd;
// 残差到权重的换算
// 分母部分 点离激光越远 则 分母越大,那么权重就越大,
float s = 1 - 0.9 * fabs(pd2) / sqrt(sqrt(pointOri.x * pointOri.x
+ pointOri.y * pointOri.y + pointOri.z * pointOri.z));
// 残差 x y z 代表梯度方向 intensity 为大小
coeff.x = s * pa;
coeff.y = s * pb;
coeff.z = s * pc;
coeff.intensity = s * pd2;
// 如果权重大于阈值,就认为是一个有效的约束
if (s > 0.1) {
laserCloudOriSurfVec[i] = pointOri;
coeffSelSurfVec[i] = coeff;
laserCloudOriSurfFlag[i] = true;
}
}
}
}
}
void combineOptimizationCoeffs()
{
// combine corner coeffs
// 遍历 角点, 只有标记为true的时候才是有效约束
for (int i = 0; i < laserCloudCornerLastDSNum; ++i){
// laserCloudOriCornerFlag 在 函数cornerOptimization()中赋值true
if (laserCloudOriCornerFlag[i] == true){
// 点和残差及梯度加入到 laserCloudOri 和coeffSel 中
laserCloudOri->push_back(laserCloudOriCornerVec[i]); // 点
coeffSel->push_back(coeffSelCornerVec[i]); // 残差及梯度
}
}
// combine surf coeffs 同理处理面点,只有标记为true的时候才是有效约束
for (int i = 0; i < laserCloudSurfLastDSNum; ++i){
// laserCloudOriSurfFlag 在 函数surfOptimization()中赋值true
if (laserCloudOriSurfFlag[i] == true){
// 点和残差及梯度加入到 laserCloudOri 和coeffSel 中
laserCloudOri->push_back(laserCloudOriSurfVec[i]);
coeffSel->push_back(coeffSelSurfVec[i]);
}
}
// reset flag for next iteration
//
// 标志位清零
std::fill(laserCloudOriCornerFlag.begin(), laserCloudOriCornerFlag.end(), false);
std::fill(laserCloudOriSurfFlag.begin(), laserCloudOriSurfFlag.end(), false);
}
// 当数据准备好之后,即可开始下面的优化
bool LMOptimization(int iterCount)
{
// This optimization is from the original loam_velodyne by Ji Zhang, need to cope with coordinate transformation
// 相机到雷达坐标系的变换 雷达到相机坐标系的变换
// lidar <- camera --- camera <- lidar
// x = z --- x = y
// y = x --- y = z
// z = y --- z = x
// roll = yaw --- roll = pitch
// pitch = roll --- pitch = yaw
// yaw = pitch --- yaw = roll
// lidar -> camera 0 x, 1 y, 2 z 正好对应上面的变换
float srx = sin(transformTobeMapped[1]); // y
float crx = cos(transformTobeMapped[1]); // y
float sry = sin(transformTobeMapped[2]); // z
float cry = cos(transformTobeMapped[2]); // z
float srz = sin(transformTobeMapped[0]); // x
float crz = cos(transformTobeMapped[0]); // x
// 检测有多少个约束,如果约束小于50,则直接return false
int laserCloudSelNum = ->size();
if (laserCloudSelNum < 50) {
return false;
}
//
// 非线性最小二乘求解
// 高斯牛顿法的原理
//
cv::Mat matA(laserCloudSelNum, 6, CV_32F, cv::Scalar::all(0)); // 雅克比矩阵J
cv::Mat matAt(6, laserCloudSelNum, CV_32F, cv::Scalar::all(0)); // 雅克比矩阵转置 J^T
cv::Mat matAtA(6, 6, CV_32F, cv::Scalar::all(0)); // 矩阵 J^TJ
cv::Mat matB(laserCloudSelNum, 1, CV_32F, cv::Scalar::all(0));
cv::Mat matAtB(6, 1, CV_32F, cv::Scalar::all(0)); // -JTe
cv::Mat matX(6, 1, CV_32F, cv::Scalar::all(0));
// 临时变量
PointType pointOri, coeff;
// 迭代每一个约束点进行优化求解
for (int i = 0; i < laserCloudSelNum; i++) {
// 先转到相机坐标系
// lidar -> camera 首先将当前 点 转到相机系 lidar -> camera
pointOri.x = laserCloudOri->points[i].y;
pointOri.y = laserCloudOri->points[i].z;
pointOri.z = laserCloudOri->points[i].x;
// lidar -> camera 将当前点到线(面)的 单位向量 转到相机系
coeff.x = coeffSel->points[i].y;
coeff.y = coeffSel->points[i].z;
coeff.z = coeffSel->points[i].x;
coeff.intensity = coeffSel->points[i].intensity;
// in camera
// 旋转矩阵 R 网上有公式,有矩阵形式,可查找参考
//
// X0 = R * Xi + T
// R = R_yaw * R_pitch * R_roll
// = R_ry * R_rx * R_rz
// = |cry 0 sry| |1 0 0 | |crz -srz 0|
// |0 1 0 | * |0 crx -srx| * |srz crz 0|
// |-sry 0 cry| |0 srx crx| | 0 0 1|
//
// = |crycrz+srxsrysrz srxsrycrz-crysrz crxsry|
// | crxsrz crxcrz -srx|
// |srxcrysrz-srycrz srysrz+srxcrycrz crxcry|
//
// error = (R * point + T) * coeff
// 求导:
//** 距离对旋转矩阵R 的求导
// |crxsrysrz crxsrycrz -srxsry|
// derror/drx = |-srxsrz -srxcrz -crx |
// |crxcrysrz crxcrycrz -srxcry|
//
//
// |srxcrysrz-srycrz srxcrycrz+srysrz crxcry|
// derror/dry = | 0 0 0 |
// |-srxsrysrz-crycrz crysrz-srxsrycrz -crxsry|
//
//
// |srxsrycrz-crysrz -srxsrysrz-crycrz 0|
// derror/drz = | crxcrz -crxsrz 0|
// |srxcrycrz+srysrz srycrz-srxcrysrz 0|
// 最后再乘以 coeff
//
//** 距离对平移的偏导【雅克比矩阵】
// derror/dtx = coeff.x
// derror/dty = coeff.y
// derror/dtz = coeff.z
//
//
//
float arx = (crx*sry*srz*pointOri.x + crx*crz*sry*pointOri.y - srx*sry*pointOri.z) * coeff.x
+ (-srx*srz*pointOri.x - crz*srx*pointOri.y - crx*pointOri.z) * coeff.y
+ (crx*cry*srz*pointOri.x + crx*cry*crz*pointOri.y - cry*srx*pointOri.z) * coeff.z;
float ary = ((cry*srx*srz - crz*sry)*pointOri.x
+ (sry*srz + cry*crz*srx)*pointOri.y + crx*cry*pointOri.z) * coeff.x
+ ((-cry*crz - srx*sry*srz)*pointOri.x
+ (cry*srz - crz*srx*sry)*pointOri.y - crx*sry*pointOri.z) * coeff.z;
float arz = ((crz*srx*sry - cry*srz)*pointOri.x + (-cry*crz-srx*sry*srz)*pointOri.y)*coeff.x
+ (crx*crz*pointOri.x - crx*srz*pointOri.y) * coeff.y
+ ((sry*srz + cry*crz*srx)*pointOri.x + (crz*sry-cry*srx*srz)*pointOri.y)*coeff.z;
// camera -> lidar
// 这里就是把camera转到lidar了, 赋值 雅克比矩阵
matA.at<float>(i, 0) = arz;
matA.at<float>(i, 1) = arx;
matA.at<float>(i, 2) = ary;
// 雅可比矩阵中距离对平移的偏导
matA.at<float>(i, 3) = coeff.z;
matA.at<float>(i, 4) = coeff.x;
matA.at<float>(i, 5) = coeff.y;
matB.at<float>(i, 0) = -coeff.intensity;
}
// 下面 构造 JTJ 以及 -JTe 矩阵
cv::transpose(matA, matAt);
matAtA = matAt * matA;
matAtB = matAt * matB;
// 利用CV的方法求解增量 JTJX=-JTe
// 利用高斯牛顿法进行求解,
// 高斯牛顿法的原型是J^(T)*J * delta(x) = -J*f(x)
// J是雅克比矩阵,这里是A,f(x)是优化目标,这里是-B(符号在给B赋值时候就放进去了)
// 通过QR分解的方式,求解matAtA*matX=matAtB,得到解matX
cv::solve(matAtA, matAtB, matX, cv::DECOMP_QR);
// 检测一下 是否有退化得情况
// 首次迭代,检查近似Hessian矩阵(J^T·J)是否退化,或者称为奇异,行列式值=0 todo
if (iterCount == 0) {
cv::Mat matE(1, 6, CV_32F, cv::Scalar::all(0)); // 特征值
cv::Mat matV(6, 6, CV_32F, cv::Scalar::all(0)); // 特征向量
cv::Mat matV2(6, 6, CV_32F, cv::Scalar::all(0)); // 特征向量 copy
// 对JTJ[matAtA] 进行特征值分解
cv::eigen(matAtA, matE, matV);
matV.copyTo(matV2);
isDegenerate = false;
float eignThre[6] = {100, 100, 100, 100, 100, 100};
//
// 特征值从小到大遍历,如果小于阈值就认为退化
// 对应的特征向量全部置0
// 退化标志位 为 true
for (int i = 5; i >= 0; i--) {
if (matE.at<float>(0, i) < eignThre[i]) {
for (int j = 0; j < 6; j++) {
matV2.at<float>(i, j) = 0;
}
isDegenerate = true;
} else {
break;
}
}
matP = matV.inv() * matV2;
}
// 如果发生退化,就对增量进行修改,退化方向不更新
if (isDegenerate)
{
cv::Mat matX2(6, 1, CV_32F, cv::Scalar::all(0));
matX.copyTo(matX2);
matX = matP * matX2;
}
// 增量更新
transformTobeMapped[0] += matX.at<float>(0, 0);
transformTobeMapped[1] += matX.at<float>(1, 0);
transformTobeMapped[2] += matX.at<float>(2, 0);
transformTobeMapped[3] += matX.at<float>(3, 0);
transformTobeMapped[4] += matX.at<float>(4, 0);
transformTobeMapped[5] += matX.at<float>(5, 0);
// 计算更新的旋转和平移大小
float deltaR = sqrt(
pow(pcl::rad2deg(matX.at<float>(0, 0)), 2) +
pow(pcl::rad2deg(matX.at<float>(1, 0)), 2) +
pow(pcl::rad2deg(matX.at<float>(2, 0)), 2));
float deltaT = sqrt(
pow(matX.at<float>(3, 0) * 100, 2) +
pow(matX.at<float>(4, 0) * 100, 2) +
pow(matX.at<float>(5, 0) * 100, 2));
// 如果更新的旋转和平移过小,那么认为达到最优解
if (deltaR < 0.05 && deltaT < 0.05) {
return true; // converged
}
// 否则继续优化
return false; // keep optimizing
}
/**
* 得到一个旋转和平移,使得当前帧最好的贴合到局部地图中去 (ICP 的思想,ICP就是得到旋转矩阵和平移,来进行配准)
* 1、先构建了角点和面点的残差及梯度方向 cornerOptimization();surfOptimization();
* 2、通过combineOptimizationCoeffs();函数将角点和面点的残差及梯度统一到一起
*
*/
void scan2MapOptimization()
{
// 如果没有关键帧,那也没办法做当前帧到局部地图的匹配,则直接return
if (cloudKeyPoses3D->points.empty())
return;
// edgeFeatureMinValidNum = 10, surfFeatureMinValidNum = 100
// 判断当前帧的角点数和面点数是否足够, 默认 角点要求10 面点要求100
if (laserCloudCornerLastDSNum > edgeFeatureMinValidNum && laserCloudSurfLastDSNum > surfFeatureMinValidNum)
{
// if 里面内容是 配准过程
// 分别把角点和面点 局部地图构建 kdtree
kdtreeCornerFromMap->setInputCloud(laserCloudCornerFromMapDS); // extractCloud() 降采样之后的 特征点地图
kdtreeSurfFromMap->setInputCloud(laserCloudSurfFromMapDS);
/**
* 迭代求解,迭代30次
* 里面是手写的优化器
* lio-sam是继承了 loam 和 lego-loam 中的 高斯牛顿的 优化方法
*/
for (int iterCount = 0; iterCount < 30; iterCount++)
{
laserCloudOri->clear();
coeffSel->clear();
// 角点优化
cornerOptimization();
// 平面点优化
surfOptimization();
// 通过下面这个函数将角点和面点的残差及梯度统一到一起
// 保存到:laserCloudOri 和 coeffSel
combineOptimizationCoeffs();
// 当数据准备好之后,即可开始下面的优化
// 执行优化求解
// 虽然函数名写的是LM优化算法,但是函数内部是高斯牛顿下降优化算法
//
if (LMOptimization(iterCount) == true)
break;
}
// 求解出来优化结果后 把结果和imu进行一次加权融合
transformUpdate();
}
else { //角点或者面点的数量不够,则终端提示信息
ROS_WARN("Not enough features! Only %d edge and %d planar features available.", laserCloudCornerLastDSNum, laserCloudSurfLastDSNum);
}
}
// 使用了9轴imu的orientation与做transformTobeMapped插值, 并且roll和pitch收到常量阈值约束(权重)
void transformUpdate()
{
// 判断 可以获取九轴imu的世界坐标系下的姿态
if (cloudInfo.imuAvailable == true)
{
// 角度没有很大
if (std::abs(cloudInfo.imuPitchInit) < 1.4)
{
//imu数据的权重约束
double imuWeight = imuRPYWeight;
tf::Quaternion imuQuaternion;
tf::Quaternion transformQuaternion;
double rollMid, pitchMid, yawMid;
//lidar 匹配获得的roll角转成四元数
//imu 获得的roll角转成四元数
//使用四元的球面插值
//插值的结果作为roll的最终结果
// slerp roll
transformQuaternion.setRPY(transformTobeMapped[0], 0, 0);
imuQuaternion.setRPY(cloudInfo.imuRollInit, 0, 0);
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
transformTobeMapped[0] = rollMid;
// slerp pitch 同理pitch 角度
transformQuaternion.setRPY(0, transformTobeMapped[1], 0);
imuQuaternion.setRPY(0, cloudInfo.imuPitchInit, 0);
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
transformTobeMapped[1] = pitchMid;
}
}
// 对roll pitch 和z进行一些约束,主要针对室内2d场景下,已知2d先验可以加上这些约束
transformTobeMapped[0] = constraintTransformation(transformTobeMapped[0], rotation_tollerance);
transformTobeMapped[1] = constraintTransformation(transformTobeMapped[1], rotation_tollerance);
transformTobeMapped[5] = constraintTransformation(transformTobeMapped[5], z_tollerance);
// 最终的结果也可以转成eigen的结构, 当前帧位姿
incrementalOdometryAffineBack = trans2Affine3f(transformTobeMapped);
}
float constraintTransformation(float value, float limit)
{
if (value < -limit)
value = -limit;
if (value > limit)
value = limit;
return value;
}
/**
* 保存关键帧
* 计算当前帧与前一帧位姿变换,如果变化太小,不设为关键帧,反之设为关键帧
* 通过旋转和平移增量,判断是否是关键帧, 如果不是关键帧则不往因子图里加factor
*/
bool saveFrame()
{
// 如果没有关键帧,就直接认为是关键帧
if (cloudKeyPoses3D->points.empty())
return true;
// if (sensor == SensorType::LIVOX)
// {
// if (timeLaserInfoCur - cloudKeyPoses6D->back().time > 1.0)
// return true;
// }
// 前一帧位姿(上一个关键帧位姿)
Eigen::Affine3f transStart = pclPointToAffine3f(cloudKeyPoses6D->back());
// 当前帧位姿
Eigen::Affine3f transFinal = pcl::getTransformation(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5],
transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
// 位姿变换增量 两个位姿之间的 delta pose
Eigen::Affine3f transBetween = transStart.inverse() * transFinal;
float x, y, z, roll, pitch, yaw;
// 通过变换矩阵的到 欧拉角(旋转)和位置(平移)
pcl::getTranslationAndEulerAngles(transBetween, x, y, z, roll, pitch, yaw);
// 旋转和平移量都较小,当前帧不设为关键帧
if (abs(roll) < surroundingkeyframeAddingAngleThreshold &&
abs(pitch) < surroundingkeyframeAddingAngleThreshold &&
abs(yaw) < surroundingkeyframeAddingAngleThreshold &&
sqrt(x*x + y*y + z*z) < surroundingkeyframeAddingDistThreshold)
return false;
return true;
}
/**
* 添加激光雷达帧间里程计因子
*/
void addOdomFactor()
{
// 如果是第一帧 关键帧
if (cloudKeyPoses3D->points.empty())
{
// 置信度就设置差一点,尤其是不可观的平移和yaw角
noiseModel::Diagonal::shared_ptr priorNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-2, 1e-2, M_PI*M_PI, 1e8, 1e8, 1e8).finished()); // rad*rad, meter*meter
// 增加先验约束 , 对第 0 个节点增加约束
gtSAMgraph.add(PriorFactor<Pose3>(0, trans2gtsamPose(transformTobeMapped), priorNoise));
// 加入节点信息 初始值
initialEstimate.insert(0, trans2gtsamPose(transformTobeMapped));
}
// 如果不是第一帧,就增加帧间约束
else{
// 这时帧间约束置信度就设置高一些
noiseModel::Diagonal::shared_ptr odometryNoise = noiseModel::Diagonal::Variances((Vector(6) << 1e-6, 1e-6, 1e-6, 1e-4, 1e-4, 1e-4).finished());
// 上一关键帧 位姿 转成 gtsam的 格式
gtsam::Pose3 poseFrom = pclPointTogtsamPose3(cloudKeyPoses6D->points.back());
// 当前关键帧 位姿 转成 gtsam的 格式
gtsam::Pose3 poseTo = trans2gtsamPose(transformTobeMapped);
// 这是 一个 帧间 约束 ,分别 输入两个 节点 的 id,帧间约束大小 以及 置信度
gtSAMgraph.add(BetweenFactor<Pose3>(cloudKeyPoses3D->size()-1, cloudKeyPoses3D->size(), poseFrom.between(poseTo), odometryNoise));
// 加入节点信息 先验位姿
initialEstimate.insert(cloudKeyPoses3D->size(), poseTo);
}
}
/// 我们用不到
void addGPSFactor()
{
// 如果没有gps信息就算了
if (gpsQueue.empty())
return;
// wait for system initialized and settles down
// 如果有gps但是没有关键帧信息也算了 因为gps 是给关键帧提供约束的
if (cloudKeyPoses3D->points.empty())
return;
else
{
// 第一个关键帧和最后一个关键帧相差很近,也就算了,要么刚起步,要么会触发回环
if (pointDistance(cloudKeyPoses3D->front(), cloudKeyPoses3D->back()) < 5.0)
return;
}
// pose covariance small, no need to correct
// gtsam 反馈的 当前 x、y 的置信度,如果置信度比较高 也不需要 gps来进行 优化
if (poseCovariance(3,3) < poseCovThreshold && poseCovariance(4,4) < poseCovThreshold)
return;
// last gps position
static PointType lastGPSPoint;
while (!gpsQueue.empty())
{
// 把距离当前帧比较早的帧都抛弃
if (gpsQueue.front().header.stamp.toSec() < timeLaserInfoCur - 0.2)
{
// message too old
gpsQueue.pop_front();
}
else if (gpsQueue.front().header.stamp.toSec() > timeLaserInfoCur + 0.2)
{
// message too new
break;
}
else
{
nav_msgs::Odometry thisGPS = gpsQueue.front();
gpsQueue.pop_front();
// GPS too noisy, skip
float noise_x = thisGPS.pose.covariance[0];
float noise_y = thisGPS.pose.covariance[7];
float noise_z = thisGPS.pose.covariance[14];
if (noise_x > gpsCovThreshold || noise_y > gpsCovThreshold)
continue;
float gps_x = thisGPS.pose.pose.position.x;
float gps_y = thisGPS.pose.pose.position.y;
float gps_z = thisGPS.pose.pose.position.z;
if (!useGpsElevation)
{
gps_z = transformTobeMapped[5];
noise_z = 0.01;
}
// GPS not properly initialized (0,0,0)
if (abs(gps_x) < 1e-6 && abs(gps_y) < 1e-6)
continue;
// Add GPS every a few meters
PointType curGPSPoint;
curGPSPoint.x = gps_x;
curGPSPoint.y = gps_y;
curGPSPoint.z = gps_z;
if (pointDistance(curGPSPoint, lastGPSPoint) < 5.0)
continue;
else
lastGPSPoint = curGPSPoint;
gtsam::Vector Vector3(3);
Vector3 << max(noise_x, 1.0f), max(noise_y, 1.0f), max(noise_z, 1.0f);
noiseModel::Diagonal::shared_ptr gps_noise = noiseModel::Diagonal::Variances(Vector3);
gtsam::GPSFactor gps_factor(cloudKeyPoses3D->size(), gtsam::Point3(gps_x, gps_y, gps_z), gps_noise);
gtSAMgraph.add(gps_factor);
aLoopIsClosed = true;
break;
}
}
}
void addLoopFactor()
{
// 有一个专门的回环检测线程会检测回环,检测到就会给这个队列塞入回环约束
if (loopIndexQueue.empty())
return;
// 把队列里面所有的回环约束添加进行
for (int i = 0; i < (int)loopIndexQueue.size(); ++i)
{
// 当前帧 回环帧 索引
int indexFrom = loopIndexQueue[i].first;
int indexTo = loopIndexQueue[i].second;
// 帧间约束
gtsam::Pose3 poseBetween = loopPoseQueue[i];
// 回环的置信度就是icp的得分
gtsam::noiseModel::Diagonal::shared_ptr noiseBetween = loopNoiseQueue[i];
// 加入约束
gtSAMgraph.add(BetweenFactor<Pose3>(indexFrom, indexTo, poseBetween, noiseBetween));
}
// 清空回环相关队列
loopIndexQueue.clear();
loopPoseQueue.clear();
loopNoiseQueue.clear();
// 标志位 至 true
aLoopIsClosed = true;
}
/**
* 如何将三者(雷达里程计、回环检测、gps)进行融合,来实现全局位姿优化的。
*/
void saveKeyFramesAndFactor()
{
if (saveFrame() == false)
return;
// 如果是关键帧的话就给isam增加因子
// odom factor
addOdomFactor();
// gps factor
addGPSFactor();
// loop factor
addLoopFactor();
// cout << "****************************************************" << endl;
// gtSAMgraph.print("GTSAM Graph:\n");
// update iSAM
// 所有因子加完了,就调用isam 接口,更新图模型
isam->update(gtSAMgraph, initialEstimate);
isam->update();
// 如果加入了gps约束或者回环约束,isam需要进行更多次的优化
if (aLoopIsClosed == true)
{
isam->update();
isam->update();
isam->update();
isam->update();
isam->update();
}
// 将约束和节点信息清空,他们已经被加入到isam中去了,因此这里清空不会影响整个优化
gtSAMgraph.resize(0);
initialEstimate.clear();
//save key poses
PointType thisPose3D;
PointTypePose thisPose6D;
Pose3 latestEstimate;
// 通过接口获得所以变量的状态
isamCurrentEstimate = isam->calculateEstimate();
// 取出优化后的最新关键帧位姿
latestEstimate = isamCurrentEstimate.at<Pose3>(isamCurrentEstimate.size()-1);
// cout << "****************************************************" << endl;
// isamCurrentEstimate.print("Current estimate: ");
// 平移信息取出来保存进 clouKeyPoses 3D 这个结构中,其中索引作为 intensity
thisPose3D.x = latestEstimate.translation().x();
thisPose3D.y = latestEstimate.translation().y();
thisPose3D.z = latestEstimate.translation().z();
thisPose3D.intensity = cloudKeyPoses3D->size(); // this can be used as index
cloudKeyPoses3D->push_back(thisPose3D);
// 6D姿态同样保留下来
thisPose6D.x = thisPose3D.x;
thisPose6D.y = thisPose3D.y;
thisPose6D.z = thisPose3D.z;
thisPose6D.intensity = thisPose3D.intensity ; // this can be used as index
thisPose6D.roll = latestEstimate.rotation().roll();
thisPose6D.pitch = latestEstimate.rotation().pitch();
thisPose6D.yaw = latestEstimate.rotation().yaw();
thisPose6D.time = timeLaserInfoCur;
cloudKeyPoses6D->push_back(thisPose6D);
// cout << "****************************************************" << endl;
// cout << "Pose covariance:" << endl;
// cout << isam->marginalCovariance(isamCurrentEstimate.size()-1) << endl << endl;
// 保存当前位姿的置信度 用于是否使用gps的判断
poseCovariance = isam->marginalCovariance(isamCurrentEstimate.size()-1);
// save updated transform
// 将优化后的位姿更新到transformTobeMapped数组中,作为当前最佳估计值
transformTobeMapped[0] = latestEstimate.rotation().roll();
transformTobeMapped[1] = latestEstimate.rotation().pitch();
transformTobeMapped[2] = latestEstimate.rotation().yaw();
transformTobeMapped[3] = latestEstimate.translation().x();
transformTobeMapped[4] = latestEstimate.translation().y();
transformTobeMapped[5] = latestEstimate.translation().z();
// save all the received edge and surf points
pcl::PointCloud<PointType>::Ptr thisCornerKeyFrame(new pcl::PointCloud<PointType>());
pcl::PointCloud<PointType>::Ptr thisSurfKeyFrame(new pcl::PointCloud<PointType>());
// 当前帧的点云的角点和面点 分别拷贝一下
pcl::copyPointCloud(*laserCloudCornerLastDS, *thisCornerKeyFrame);
pcl::copyPointCloud(*laserCloudSurfLastDS, *thisSurfKeyFrame);
// save key frame cloud
// 关键帧的点云保存下来
cornerCloudKeyFrames.push_back(thisCornerKeyFrame);
surfCloudKeyFrames.push_back(thisSurfKeyFrame);
// save path for visualization
// 根据当前最新位姿更新rviz可视化
updatePath(thisPose6D);
}
/**
* 调整全局轨迹
*/
void correctPoses()
{
if (cloudKeyPoses3D->points.empty())
return;
// 只有回环以及gps信息这些会触发全局调整信息才会触发
if (aLoopIsClosed == true)
{
// clear map cache
// 存放关键帧的位姿和点云
laserCloudMapContainer.clear();
// clear path 清空path
globalPath.poses.clear();
// update key poses 更新所有的位姿
int numPoses = isamCurrentEstimate.size();
for (int i = 0; i < numPoses; ++i)
{
// 3D
cloudKeyPoses3D->points[i].x = isamCurrentEstimate.at<Pose3>(i).translation().x();
cloudKeyPoses3D->points[i].y = isamCurrentEstimate.at<Pose3>(i).translation().y();
cloudKeyPoses3D->points[i].z = isamCurrentEstimate.at<Pose3>(i).translation().z();
// 6D
cloudKeyPoses6D->points[i].x = cloudKeyPoses3D->points[i].x;
cloudKeyPoses6D->points[i].y = cloudKeyPoses3D->points[i].y;
cloudKeyPoses6D->points[i].z = cloudKeyPoses3D->points[i].z;
cloudKeyPoses6D->points[i].roll = isamCurrentEstimate.at<Pose3>(i).rotation().roll();
cloudKeyPoses6D->points[i].pitch = isamCurrentEstimate.at<Pose3>(i).rotation().pitch();
cloudKeyPoses6D->points[i].yaw = isamCurrentEstimate.at<Pose3>(i).rotation().yaw();
updatePath(cloudKeyPoses6D->points[i]);
}
aLoopIsClosed = false;
}
}
void updatePath(const PointTypePose& pose_in)
{
geometry_msgs::PoseStamped pose_stamped;
pose_stamped.header.stamp = ros::Time().fromSec(pose_in.time);
pose_stamped.header.frame_id = odometryFrame;
pose_stamped.pose.position.x = pose_in.x;
pose_stamped.pose.position.y = pose_in.y;
pose_stamped.pose.position.z = pose_in.z;
tf::Quaternion q = tf::createQuaternionFromRPY(pose_in.roll, pose_in.pitch, pose_in.yaw);
pose_stamped.pose.orientation.x = q.x();
pose_stamped.pose.orientation.y = q.y();
pose_stamped.pose.orientation.z = q.z();
pose_stamped.pose.orientation.w = q.w();
globalPath.poses.push_back(pose_stamped);
}
void publishOdometry()
{
// Publish odometry for ROS (global)
nav_msgs::Odometry laserOdometryROS;
laserOdometryROS.header.stamp = timeLaserInfoStamp;
laserOdometryROS.header.frame_id = odometryFrame;
laserOdometryROS.child_frame_id = "odom_mapping";
laserOdometryROS.pose.pose.position.x = transformTobeMapped[3];
laserOdometryROS.pose.pose.position.y = transformTobeMapped[4];
laserOdometryROS.pose.pose.position.z = transformTobeMapped[5];
laserOdometryROS.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]);
pubLaserOdometryGlobal.publish(laserOdometryROS);
// Publish TF
static tf::TransformBroadcaster br;
tf::Transform t_odom_to_lidar = tf::Transform(tf::createQuaternionFromRPY(transformTobeMapped[0], transformTobeMapped[1], transformTobeMapped[2]),
tf::Vector3(transformTobeMapped[3], transformTobeMapped[4], transformTobeMapped[5]));
tf::StampedTransform trans_odom_to_lidar = tf::StampedTransform(t_odom_to_lidar, timeLaserInfoStamp, odometryFrame, "lidar_link");
br.sendTransform(trans_odom_to_lidar);
// Publish odometry for ROS (incremental)
static bool lastIncreOdomPubFlag = false;
static nav_msgs::Odometry laserOdomIncremental; // incremental odometry msg
static Eigen::Affine3f increOdomAffine; // incremental odometry in affine
if (lastIncreOdomPubFlag == false)
{
lastIncreOdomPubFlag = true;
laserOdomIncremental = laserOdometryROS;
increOdomAffine = trans2Affine3f(transformTobeMapped);
} else {
Eigen::Affine3f affineIncre = incrementalOdometryAffineFront.inverse() * incrementalOdometryAffineBack;
increOdomAffine = increOdomAffine * affineIncre;
float x, y, z, roll, pitch, yaw;
pcl::getTranslationAndEulerAngles (increOdomAffine, x, y, z, roll, pitch, yaw);
if (cloudInfo.imuAvailable == true)
{
if (std::abs(cloudInfo.imuPitchInit) < 1.4)
{
double imuWeight = 0.1;
tf::Quaternion imuQuaternion;
tf::Quaternion transformQuaternion;
double rollMid, pitchMid, yawMid;
// slerp roll
transformQuaternion.setRPY(roll, 0, 0);
imuQuaternion.setRPY(cloudInfo.imuRollInit, 0, 0);
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
roll = rollMid;
// slerp pitch
transformQuaternion.setRPY(0, pitch, 0);
imuQuaternion.setRPY(0, cloudInfo.imuPitchInit, 0);
tf::Matrix3x3(transformQuaternion.slerp(imuQuaternion, imuWeight)).getRPY(rollMid, pitchMid, yawMid);
pitch = pitchMid;
}
}
laserOdomIncremental.header.stamp = timeLaserInfoStamp;
laserOdomIncremental.header.frame_id = odometryFrame;
laserOdomIncremental.child_frame_id = "odom_mapping";
laserOdomIncremental.pose.pose.position.x = x;
laserOdomIncremental.pose.pose.position.y = y;
laserOdomIncremental.pose.pose.position.z = z;
laserOdomIncremental.pose.pose.orientation = tf::createQuaternionMsgFromRollPitchYaw(roll, pitch, yaw);
if (isDegenerate)
laserOdomIncremental.pose.covariance[0] = 1;
else
laserOdomIncremental.pose.covariance[0] = 0;
}
pubLaserOdometryIncremental.publish(laserOdomIncremental);
}
void publishFrames()
{
if (cloudKeyPoses3D->points.empty())
return;
// publish key poses
publishCloud(pubKeyPoses, cloudKeyPoses3D, timeLaserInfoStamp, odometryFrame);
// Publish surrounding key frames
publishCloud(pubRecentKeyFrames, laserCloudSurfFromMapDS, timeLaserInfoStamp, odometryFrame);
// publish registered key frame
if (pubRecentKeyFrame.getNumSubscribers() != 0)
{
pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
*cloudOut += *transformPointCloud(laserCloudCornerLastDS, &thisPose6D);
*cloudOut += *transformPointCloud(laserCloudSurfLastDS, &thisPose6D);
publishCloud(pubRecentKeyFrame, cloudOut, timeLaserInfoStamp, odometryFrame);
}
// publish registered high-res raw cloud
if (pubCloudRegisteredRaw.getNumSubscribers() != 0)
{
pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
pcl::fromROSMsg(cloudInfo.cloud_deskewed, *cloudOut);
PointTypePose thisPose6D = trans2PointTypePose(transformTobeMapped);
*cloudOut = *transformPointCloud(cloudOut, &thisPose6D);
publishCloud(pubCloudRegisteredRaw, cloudOut, timeLaserInfoStamp, odometryFrame);
}
// publish path
if (pubPath.getNumSubscribers() != 0)
{
globalPath.header.stamp = timeLaserInfoStamp;
globalPath.header.frame_id = odometryFrame;
pubPath.publish(globalPath);
}
// publish SLAM infomation for 3rd-party usage
static int lastSLAMInfoPubSize = -1;
if (pubSLAMInfo.getNumSubscribers() != 0)
{
if (lastSLAMInfoPubSize != cloudKeyPoses6D->size())
{
lio_sam::cloud_info slamInfo;
slamInfo.header.stamp = timeLaserInfoStamp;
pcl::PointCloud<PointType>::Ptr cloudOut(new pcl::PointCloud<PointType>());
*cloudOut += *laserCloudCornerLastDS;
*cloudOut += *laserCloudSurfLastDS;
slamInfo.key_frame_cloud = publishCloud(ros::Publisher(), cloudOut, timeLaserInfoStamp, lidarFrame);
slamInfo.key_frame_poses = publishCloud(ros::Publisher(), cloudKeyPoses6D, timeLaserInfoStamp, odometryFrame);
pcl::PointCloud<PointType>::Ptr localMapOut(new pcl::PointCloud<PointType>());
*localMapOut += *laserCloudCornerFromMapDS;
*localMapOut += *laserCloudSurfFromMapDS;
slamInfo.key_frame_map = publishCloud(ros::Publisher(), localMapOut, timeLaserInfoStamp, odometryFrame);
pubSLAMInfo.publish(slamInfo);
lastSLAMInfoPubSize = cloudKeyPoses6D->size();
}
}
}
};
int main(int argc, char** argv)
{
ros::init(argc, argv, "lio_sam");
// 类对象 MO
mapOptimization MO;
ROS_INFO("\033[1;32m----> Map Optimization Started.\033[0m");
/**
* loopClosureThread()线程有两个主要函数,执行回环检测以及可视化回环检测的线(RVIZ展示)
* performLoopClosure();
* visualizeLoopClosure();
*/
std::thread loopthread(&mapOptimization::loopClosureThread, &MO);
/**
* visualizeGlobalMapThread() 线程主要两部分: 发布全局地图以及保存点云PCD文件
* publishGlobalMap();
*/
std::thread visualizeMapThread(&mapOptimization::visualizeGlobalMapThread, &MO);
ros::spin();
loopthread.join();
visualizeMapThread.join();
return 0;
}