Codeforces 617E XOR and Favorite Number 【莫队】

本文介绍了一种解决区间异或查询问题的有效算法。通过预处理前缀异或和及使用莫队算法优化查询过程,实现了快速计算指定区间内元素异或结果等于特定值的子数组对数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. XOR and Favorite Number
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Bob has a favorite number k and ai of length n. Now he asks you to answer m queries. Each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is equal to k.

Input

The first line of the input contains integers nm and k (1 ≤ n, m ≤ 100 0000 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and Bob's favorite number respectively.

The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — Bob's array.

Then m lines follow. The i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.

Output

Print m lines, answer the queries in the order they appear in the input.

Sample test(s)
input
6 2 3
1 2 1 1 0 3
1 6
3 5
output
7
0
input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
output
9
4
4
Note

In the first sample the suitable pairs of i and j for the first query are: (12), (14), (15), (23), (36), (56), (66). Not a single of these pairs is suitable for the second query.

In the second sample xor equals 1 for all subarrays of an odd length.



题意:有n个数和m次查询,每次查询区间[l, r]问满足ai ^ ai+1 ^ ... ^ aj == k的(i, j) (l <= i <= j <= r)有多少对。


思路:离线做。首先预处理前缀异或和sum[],那么ai ^ ... ^ aj == sum[i-1] ^ sum[j]。

这样对一次查询[l, r]的处理,可以从左到右扫一次,统计k ^ sum[i]出现的次数(l <= i <= r)。

假设已经处理到[L, R],对下一次的[l, r]处理——

若L < l,显然多余,需要去掉[L, l-1]的部分,若L > l需要加上[l, L-1]的部分,反之不需要处理。

若R > r,..................[r+1, R]......,若R < r........[R+1, r]......,..............。

用莫队做即可。


AC代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <string>
#define INF 0x3f3f3f3f
#define eps 1e-8
#define MAXN (100000+10)
#define MAXM (200000+10)
#define Ri(a) scanf("%d", &a)
#define Rl(a) scanf("%lld", &a)
#define Rf(a) scanf("%lf", &a)
#define Rs(a) scanf("%s", a)
#define Pi(a) printf("%d\n", (a))
#define Pf(a) printf("%.2lf\n", (a))
#define Pl(a) printf("%lld\n", (a))
#define Ps(a) printf("%s\n", (a))
#define W(a) while((a)--)
#define CLR(a, b) memset(a, (b), sizeof(a))
#define MOD 1000000007
#define LL long long
#define lson o<<1, l, mid
#define rson o<<1|1, mid+1, r
#define ll o<<1
#define rr o<<1|1
#define PI acos(-1.0)
using namespace std;
struct Node{
    int l, r, id; LL ans;
};
Node num[MAXN];
bool cmp1(Node a, Node b)
{
    if(a.l / 400 != b.l / 400)
        return a.l / 400 < b.l / 400;
    else
        return a.r < b.r;
}
bool cmp2(Node a, Node b){
    return a.id < b.id;
}
LL cnt[20000000+10];
int sum[MAXN];
int main()
{
    int n, m, k;
    Ri(n); Ri(m); Ri(k); int a;
    for(int i = 1; i <= n; i++)
        Ri(a), sum[i] = sum[i-1] ^ a;
    for(int i = 1; i <= m; i++)
        Ri(num[i].l), Ri(num[i].r), num[i].id = i, num[i].l--;
    sort(num+1, num+m+1, cmp1);
    LL s = 0; int L = num[1].l, R = num[1].r;
    for(int i = L; i <= R; i++)
    {
        s += cnt[k ^ sum[i]];
        cnt[sum[i]]++;
    }
    num[1].ans = s;
    for(int i = 2; i <= m; i++)
    {
        while(L > num[i].l)
        {
            L--;
            s += cnt[k ^ sum[L]];
            cnt[sum[L]]++;
        }
        while(L < num[i].l)
        {
            //L++;
            cnt[sum[L]]--;
            s -= cnt[k ^ sum[L]];
            L++;
        }
        while(R < num[i].r)
        {
            R++;
            s += cnt[k ^ sum[R]];
            cnt[sum[R]]++;
        }
        while(R > num[i].r)
        {
            //R--;
            cnt[sum[R]]--;
            s -= cnt[k ^ sum[R]];
            R--;
        }
        num[i].ans = s;
    }
    sort(num+1, num+m+1, cmp2);
    for(int i = 1; i <= m; i++) Pl(num[i].ans);
    return 0;
}



### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值