| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 7817 | Accepted: 5087 |
Description

The aim of the game is, starting from any initial set of lights on in the display, to press buttons to get the display to a state where all lights are off. When adjacent buttons are pressed, the action of one button can undo the effect of another. For instance, in the display below, pressing buttons marked X in the left display results in the right display.Note that the buttons in row 2 column 3 and row 2 column 5 both change the state of the button in row 2 column 4,so that, in the end, its state is unchanged.

Note:
1. It does not matter what order the buttons are pressed.
2. If a button is pressed a second time, it exactly cancels the effect of the first press, so no button ever need be pressed more than once.
3. As illustrated in the second diagram, all the lights in the first row may be turned off, by pressing the corresponding buttons in the second row. By repeating this process in each row, all the lights in the first
four rows may be turned out. Similarly, by pressing buttons in columns 2, 3 ?, all lights in the first 5 columns may be turned off.
Write a program to solve the puzzle.
Input
Output
Sample Input
2 0 1 1 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0
Sample Output
PUZZLE #1 1 0 1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 PUZZLE #2 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1
醉了,学校大二下学期才开线代。花了那么长时间就只为了看概念。。。o(╯□╰)o
明天补上模板。顺便ORZ大bin神。
题意:有一个5*6的矩阵,每个元素代表1盏灯,0表示灯关,1表示灯开。若你改变了第a[i][j]盏灯的状态,相应地还会改变它四周a[i-1][j]、a[i][j-1]、a[i+1][j]、a[i][j+1]这些灯的状态。因为同一盏灯连续按两次又回到初始状态,所以每个灯只需按一次,若选择按第a[i][j]盏灯,则x[i][j] = 1,否则为0。现在给你这些灯的初始状态,让你找出一种方案x[][]使得所有灯全熄灭。
高斯消元——解n元一次线性方程组。
1,将方程组化简成增广矩阵A;
2,利用列主元法 + 加减消元法 进行消元,将矩阵A变成阶梯矩阵;
3,在解唯一的情况下,形成严格的上三角矩阵,然后就是回代过程——自底向上求所有变量的解。
思路:入门题目吧,构建的矩阵比较简单。
对每盏灯,列一个异或方程,把可能影响它的灯和自己置1,其余灯置0。
比如说灯初始状态为a[i][j],全灭的方案为x[i][j]。
则有——
a[i][j] ^ x[i-1][j]*1 ^ x[i][j-1]*1 ^ x[i+1][j]*1 ^ x[i][j+1]*1 ^ x[i][j]*1 ^ (其余不相关的灯*0) = 0。
两边同时异或a[i][j]得
x[i-1][j]*1 ^ x[i][j-1]*1 ^ x[i+1][j]*1 ^ x[i][j+1]*1 ^ x[i][j]*1 ^ (其余不相关的灯*0) = a[i][j]。
30个方程组,30个变元,然后直接模板KO。
AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[31][31];//增广矩阵
int equ, var;//equ个方程 var个变元
int x[31];//解
void init_A()
{
memset(a, 0, sizeof(a));
equ = 30, var = 30;//30个方程 30个变元
for(int i = 0; i < 5; i++)
{
for(int j = 0; j < 6; j++)
{
a[i*6+j][i*6+j] = 1;
if(i > 0) a[i*6+j][(i-1)*6+j] = 1;
if(j > 0) a[i*6+j][i*6+j-1] = 1;
if(i < 4) a[i*6+j][(i+1)*6+j] = 1;
if(j < 5) a[i*6+j][i*6+j+1] = 1;
}
}
for(int i = 0; i < 30; i++)
scanf("%d", &a[i][30]);
}
int Gauss()
{
int k, max_r;
int col = 0;
for(k = 0; k < equ && col < var; k++, col++)
{
//列主元法
//找第col元素绝对值最大的行i(i > k) 与 当前行交换
max_r = k;
for(int i = k + 1; i < equ; i++)
if(a[i][col] > a[k][col])
max_r = i;
if(max_r != k)//找到 —— 交换
{
for(int i = col; i < var+1; i++)
swap(a[k][i], a[max_r][i]);
}
if(a[k][col] == 0)//k行下面的元素全为0
{
k--;
continue;
}
//加减消元
for(int i = k + 1; i < equ; i++)
{
if(a[i][col] != 0)
{
for(int j = col; j < var+1; j++)
a[i][j] ^= a[k][j];
}
}
}
//根据上三角矩阵 回代求解
for(int i = var-1; i >= 0; i--)
{
x[i] = a[i][var];
for(int j = i + 1; j < var; j++)
x[i] ^= (a[i][j] * x[j]);
}
return 0;
}
int main()
{
int t, k = 1;
scanf("%d", &t);
while(t--)
{
init_A();
Gauss();
printf("PUZZLE #%d\n", k++);
for(int i = 0; i < 30; i++)
{
if((i+1) % 6 == 0)
printf("%d\n", x[i]);
else
printf("%d ", x[i]);
}
}
return 0;
}
本文介绍了一种解决Lights Out游戏的方法,该游戏在一个5x6的矩阵中进行,目标是通过按下按钮来反转相邻灯的状态,最终使所有灯关闭。文章详细解释了如何使用高斯消元法构建和解决一组线性方程,以找到解决问题的有效策略。
679

被折叠的 条评论
为什么被折叠?



