Beauty of SequenceTime Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 304 Accepted Submission(s): 135
Problem Description
Sequence is beautiful and the beauty of an integer sequence is defined as follows: removes all but the first element from every consecutive group of equivalent elements of the sequence (i.e. unique function in C++ STL) and the summation of rest integers is
the beauty of the sequence.
Now you are given a sequence A of n integers {a1,a2,...,an}. You need find the summation of the beauty of all the sub-sequence of A. As the answer may be very large, print it modulo 109+7. Note: In mathematics, a sub-sequence is a sequence that can be derived from another sequence by deleting some elements without changing the order of the remaining elements. For example {1,3,2} is a sub-sequence of {1,4,3,5,2,1}.
Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤105), indicating the size of the sequence. The following line contains n integers a1,a2,...,an, denoting the sequence (1≤ai≤109). The sum of values n for all the test cases does not exceed 2000000.
Output
For each test case, print the answer modulo 109+7 in
a single line.
Sample Input
Sample Output
|
序列去重 后的和 —— 如 1 2 2 2 3 ,去重 后和为1 + 2 + 3 = 6。
题意:给你一个N个数组成的序列,求出所有子序列(去重后)的和。
思路:考虑每个元素作为第一个元素的贡献,然后计数即可。
AC代码:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <map>
#include <vector>
#include <queue>
#include <stack>
#include <set>
#include <cstdlib>
#define ll o<<1
#define rr o<<1|1
#define CLR(a, b) memset(a, (b), sizeof(a))
using namespace std;
typedef long long LL;
const int MAXN = 1e5 + 10;
typedef pair<int, int> pii;
const int INF = 1e9 + 10;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int MOD = 1e9 + 7;
void add(LL &x, LL y) { x += y; x %= MOD; }
using namespace std;
int a[MAXN];
LL f[MAXN];;
map<int, LL> res;
int main()
{
f[0] = 1;
for(int i = 1; i <= MAXN - 1; i++) {
f[i] = f[i - 1] * 2 % MOD;
}
int t; scanf("%d", &t);
while(t--) {
int n; scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
LL ans = 0; LL sum = 0; res.clear();
for(int i = 1; i <= n; i++) {
add(sum, f[i - 1]); add(res[a[i]], f[i - 1]);
add(ans, f[n - i] * a[i] % MOD * ((sum - res[a[i]] + MOD) % MOD + 1) % MOD);
}
printf("%lld\n", ans);
}
return 0;
}