经典排列公式的正向推导
C(n+k+1,k+1)-C(n+k,k)=C(n+k,k+1)
将组合式展开成计算式:
C(n+k+1,k+1)={(n+k+1)*(n+k)...*(n+1)}/(k+1)!
同样地:
C(n+k,k)={(n+k)*(n+k)...*(n+1)}/(k)!
GO
C(n+k+1,k+1)-C(n+k,k)={(n+k+1)*(n+k)...*(n+1)}/(k+1)! - {(n+k)*(n+k-1)...*(n+1)}/(k)!
Go
C(n+k+1,k+1)-C(n+k,k)={(n+k+1)*(n+k)...*(n+1)}/(k+1)! - {(n+k)*(n+k-1)...*(n+1)*(k+1)}/(k+1)!
GO
合并:
C(n+k+1,k+1)-C(n+k,k)={(n+k+1)*(n+k)...*(n+1)-(n+k)*(n+k-1)...*(n+1)*(k+1)}/(k+1)!
GO
C(n+k+1,k+1)-C(n+k,k)={{(n+k+1)-(k+1)} *(n+k)*(n+k-1)...*(n+1) }/(k+1)!
Go
C(n+k+1,k+1)-C(n+k,k)={n *(n+k)*(n+k-1)...*(n+1) }/(k+1)!
GO
改变形式n移动位置有:
C(n+k+1,k+1)-C(n+k,k)={(n+k)*(n+k-1)...*(n+1)*n }/(k+1)!
Go
C(n+k+1,k+1)-C(n+k,k)=C( n+k , k+1).