求In (1+x)展开的欧拉方法
上面一篇文章已经推导了 e^w=1+w,另外对于1+w,也有这样的关系成立x=(1+w)^j-1,x为任意值.
推导
1+x=(1+w)^j=e^jw
Go
In (1+x)=jw
Go
In (1+x)=j* { (x+1)^(1/j)-1 }
Go
Newton method
In (1+x)=j* { 1+x^1*(1/j)/1!+x^2*(1/j)*(1/j-1)/2!+x^3*(1/j)*(1/j-1)*(1/j-2)/3!...-1 }
Go
In (1+x)=j* { x^1*(1/j)/1!+x^2*(1/j)*(1/j-1)/2!+x^3*(1/j)*(1/j-1)*(1/j-2)/3!... }
Go
In (1+x)= { x^1/1!+x^2*(1/j-1)/2!+x^3*(1/j-1)*(1/j-2)/3!... }
Go
1/j几乎为0
In (1+x)= { x^1/1!+x^2*(0-1)/2!+x^3*(0-1)*(0-2)/3!... }
Go
In (1+x)= { x^1/1!-x^2/2+x^3/3-x^4/4... }
与前面的用积分方法获得的结果一样