乘法逆元
定义:若a∗x≡1(mod b)a*x \equiv 1 (\mod b)a∗x≡1(modb),则xxx为aaa在mod b\mod bmodb下的逆元
作用:求bamod p\frac{b}{a} \mod pabmodp,的1a\frac{1}{a}a1在mod p\mod pmodp下的整数取值
求法:
扩展欧几里得:
前提:a⊥pa\perp pa⊥p(因为扩展欧几里得要求方程ax+by=1ax+by=1ax+by=1的a⊥ba \perp ba⊥b)
做法:若是要求a∗x≡1(mod b)a*x \equiv 1(\mod b)a∗x≡1(modb),其实就是要求ax+by=1ax+by=1ax+by=1的xxx的取值,扩展欧几里得求解即可
代码实现:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
void read(int &sum)
{
sum=0;char last='w',ch=getchar();
while (ch<'0' || ch>'9') last=ch,ch=getchar();
while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();
if (last=='-') sum=-sum;
}
int gcd(int a,int b)
{
if (a%b==0) return b;
else return gcd(b,a%b);
}
void EX_gcd(int a,int b,int &x,int &y)
{
if (b==0) x=1,y=0;
else EX_gcd(b,a%b,y,x),y-=a/b*x;
}
int a,b,c;
signed main()
{
// freopen("M.in","r",stdin);
// freopen("M.out","w",stdout);
read(a),read(b),c=1;
int t=gcd(a,b);
a/=t,b/=t;
int x,y;
EX_gcd(a,b,x,y);
x*=c/t,y*=c/t;
printf("%lld",(x+b*100)%b);
// fclose(stdin);fclose(stdout);
return 0;
}
快速幂
前提:ppp是质数,且a⊥pa \perp pa⊥p(因为费马小定理ap−1≡1(mod p)a^{p-1}\equiv1(\mod p)ap−1≡1(modp),中ppp是质数,且a⊥a \perpa⊥)
做法:∵a∗x≡1(mod p)\because a*x \equiv 1 (\mod p)∵a∗x≡1(modp)
由费马小定理得,∴a∗x≡ap−1(mod p)\therefore a*x \equiv a^{p-1} (\mod p)∴a∗x≡ap−1(modp)
两边同时除aaa得,∴x≡ap−2(mod p)\therefore x \equiv a^{p-2} (\mod p)∴x≡ap−2(modp)
最后快速幂加(mod )(\mod )(mod)结束
代码实现:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
void read(int &sum)
{
sum=0;char last='w',ch=getchar();
while (ch<'0' || ch>'9') last=ch,ch=getchar();
while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();
if (last=='-') sum=-sum;
}
int a,p;
int sortm(int x,int k)
{
if (k==0) return 1;
if (k==1) return x%p;
int t=sortm(x,k/2)%p;
if (k%2==0) return t*t%p;
else return t*t%p*x%p;
}
signed main()
{
// freopen("M.in","r",stdin);
// freopen("M.out","w",stdout);
read(a),read(p);
int ans=sortm(a,p-2);
printf("%lld",ans);
// fclose(stdin);fclose(stdout);
return 0;
}
线性算法
作用:求111~nnn的所有数的逆元
做法:首先我们知道111的逆元为111,然后设要求的为iii,再设p=i∗k+rp=i*k+rp=i∗k+r,把这个式子放在(mod p)(\mod p)(modp)下,得i∗k+r≡0(mod p)i*k+r \equiv 0(\mod p)i∗k+r≡0(modp),两边同时乘以i−1,r−1i^{-1},r^{-1}i−1,r−1,得k∗r−1+i−1≡0(mod p)k*r^{-1}+i^{-1} \equiv 0(\mod p)k∗r−1+i−1≡0(modp),所以i−1≡−k∗r−1(mod p)i^{-1}\equiv -k*r^{-1}(\mod p)i−1≡−k∗r−1(modp),所以i−1≡−⌊pi⌋∗(pmod i)−1(mod p)i^{-1} \equiv -\lfloor \frac{p}{i} \rfloor*(p \mod i)^{-1} (\mod p)i−1≡−⌊ip⌋∗(pmodi)−1(modp),这样我们就可以通过前面的逆元求出当前逆元。
代码实现:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,p;
int inv[6*1000000];
signed main()
{
cin >> n >> p;
inv[1]=1;
for (int i=2;i<=n;i++)
inv[i]=(p-p/i)*inv[p%i]%p;
for (int i=1;i<=n;i++)
printf("%lld\n",inv[i]);
}
阶乘逆元
作用:求1!,2!...n!1!,2!...n!1!,2!...n!的逆元
做法:(inv[i]=1i)(inv[i]=\frac{1}{i})(inv[i]=i1)因为inv[i+1]=1(i+1)!inv[i+1]=\frac{1}{(i+1)!}inv[i+1]=(i+1)!1,所以inv[i+1]∗(i+1)=1i!inv[i+1]*(i+1)=\frac{1}{i!}inv[i+1]∗(i+1)=i!1,所以inv[i]=inv[i+1]∗(i+1)inv[i]=inv[i+1]*(i+1)inv[i]=inv[i+1]∗(i+1),这样我们就可以O(n)O(n)O(n)求解了
代码实现
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
void read(int &sum)
{
sum=0;char last='w',ch=getchar();
while (ch<'0' || ch>'9') last=ch,ch=getchar();
while (ch>='0' && ch<='9') sum=sum*10+ch-'0',ch=getchar();
if (last=='-') sum=-sum;
}
void EX_gcd(int a,int b,int &x,int &y)
{
if (b==0) x=1,y=0;
else EX_gcd(b,a%b,y,x),y-=a/b*x;
}
int n,p;
int inv[3*1000001];
signed main()
{
// freopen("M.in","r",stdin);
// freopen("M.out","w",stdout);
read(n);read(p);inv[n]=1;
for (int i=1;i<=n;i++) inv[n]*=i,inv[n]%=p;
int x,y;
EX_gcd(inv[n],p,x,y);
inv[n]=x;
for (int i=n-1;i>=1;i--)
inv[i]=inv[i+1]*(i+1)%p;
for (int i=1;i<=n;i++)
printf("%lld ",(inv[i]+p*100)%p);
// fclose(stdin);fclose(stdout);
return 0;
}
Tags:乘法逆元 数论 信息学