HDOJ-----5666---Segment---加法快速幂

本文介绍了一个计算特定直角三角形内不在边界的整数点数量的方法。通过数学推导,给出了一个有效算法,该算法利用快速幂运算求解答案模P的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Segment

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1815    Accepted Submission(s): 669


Problem Description
    Silen August does not like to talk with others.She like to find some interesting problems.

    Today she finds an interesting problem.She finds a segment x+y=q.The segment intersect the axis and produce a delta.She links some line between (0,0) and the node on the segment whose coordinate are integers.

    Please calculate how many nodes are in the delta and not on the segments,output answer mod P.
 

Input
    First line has a number,T,means testcase number.

    Then,each line has two integers q,P.

    q is a prime number,and 2q1018,1P1018,1T10.
 

Output
    Output 1 number to each testcase,answer mod P.
 

Sample Input
1 2 107
 

Sample Output
0
x+y=p这条直线与坐标轴围成的三角形中不在边界上的整数点有多少个

从x轴开始,向上或者向下(p的正负),依次是p-2, p-3, p-4 …… 1,一共是(p-1)*(p-2)/2个

#include<cstdio>
#include<iostream>
#define LL long long
using namespace std;
LL solve(LL a, LL b, LL c){
    LL ans = 0;
    while(b){//加法快速幂,和乘法基本一样
        if(b&1) ans = (ans+a)%c;
        a = 2*a%c;
        b >>= 1;
    }
    return ans;
}
int main(){
    int t;
    LL q, p;
    cin >> t;
    while(t--){
        cin >> q >> p;
        if((q-1)&1) cout << solve((q-2)/2, q-1, p) << endl;//考虑到除2是否丢精度
        else cout << solve((q-1)/2, q-2, p) << endl;
    }
    return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值