HDOJ-----5773The All-purpose Zero(LIS)

本文介绍了一种解决最长递增子序列问题的算法实现,特别关注如何处理序列中可变元素(如0可视为任意值)的情况。通过动态规划方法,文章详细解释了如何寻找给定整数序列中最长的严格递增子序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The All-purpose Zero

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1621    Accepted Submission(s): 775


Problem Description
?? gets an sequence S with n intergers(0 < n <= 100000,0<= S[i] <= 1000000).?? has a magic so that he can change 0 to any interger(He does not need to change all 0 to the same interger).?? wants you to help him to find out the length of the longest increasing (strictly) subsequence he can get.
 

Input
The first line contains an interger T,denoting the number of the test cases.(T <= 10)
For each case,the first line contains an interger n,which is the length of the array s.
The next line contains n intergers separated by a single space, denote each number in S.
 

Output
For each test case, output one line containing “Case #x: y”(without quotes), where x is the test case number(starting from 1) and y is the length of the longest increasing subsequence he can get.
 

Sample Input
2 7 2 0 2 1 2 0 5 6 1 2 3 3 0 0
 

Sample Output
Case #1: 5 Case #2: 5
Hint
In the first case,you can change the second 0 to 3.So the longest increasing subsequence is 0 1 2 3 5.

很明显的LIS,可以把0变为任意数字,求最长递增子序列

这里有个坑就是0可以变为负值,只要对0做一些特殊处理就可以了

#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 100010
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
int dp[maxn], cnt[maxn];
int ans, num, n;
void lis(){
    int flag;
    ans = 1;
    num = 0;
    dp[0] = -inf;
    dp[1] = cnt[1];
    for(int i = 2; i <= n; i++){
        if(dp[ans] < cnt[i]){
            dp[++ans] = cnt[i];
        }
        else if(!cnt[i]){
            for(int j = ans; j >= num; j--){
                dp[j+1] = dp[j]+1;//dp[0]是不变的,所以每次cnt[i]为0时把前边的dp[j]的lis向后推1位并都加上1就可以动态更新dp[i]的lis
            }
            ans++;
            num++;
        }
        else{
            flag = lower_bound(dp, dp+ans, cnt[i])-dp;
            dp[flag] = cnt[i];
        }
    }
}
int main(){
	int t, kcase = 1;
	scanf("%d", &t);
	while(t--){
        scanf("%d", &n);
        for(int i = 1; i <= n; i++){
            scanf("%d", &cnt[i]);
        }
        lis();
        printf("Case #%d: %d\n", kcase++, ans);
	}
	return 0;
}


内容概要:本文详细探讨了基于阻尼连续可调减振器(CDC)的半主动悬架系统的控制策略。首先建立了CDC减振器的动力学模型,验证了其阻尼特性,并通过实验确认了模型的准确性。接着,搭建了1/4车辆悬架模型,分析了不同阻尼系数对悬架性能的影响。随后,引入了PID、自适应模糊PID和模糊-PID并联三种控制策略,通过仿真比较它们的性能提升效果。研究表明,模糊-PID并联控制能最优地提升悬架综合性能,在平顺性和稳定性间取得最佳平衡。此外,还深入分析了CDC减振器的特性,优化了控制策略,并进行了系统级验证。 适用人群:从事汽车工程、机械工程及相关领域的研究人员和技术人员,尤其是对车辆悬架系统和控制策略感兴趣的读者。 使用场景及目标:①适用于研究和开发基于CDC减振器的半主动悬架系统的工程师;②帮助理解不同控制策略(如PID、模糊PID、模糊-PID并联)在悬架系统中的应用及其性能差异;③为优化车辆行驶舒适性和稳定性提供理论依据和技术支持。 其他说明:本文不仅提供了详细的数学模型和仿真代码,还通过实验数据验证了模型的准确性。对于希望深入了解CDC减振器工作原理及其控制策略的读者来说,本文是一份极具价值的参考资料。同时,文中还介绍了多种控制策略的具体实现方法及其优缺点,为后续的研究和实际应用提供了有益的借鉴。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值