Bellovin
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1100 Accepted Submission(s): 496
Problem Description
Peter has a sequence a1,a2,...,an
and he define a function on the sequence -- F(a1,a2,...,an)=(f1,f2,...,fn),
where fi
is the length of the longest increasing subsequence ending with
ai.
Peter would like to find another sequence b1,b2,...,bn in such a manner that F(a1,a2,...,an) equals to F(b1,b2,...,bn). Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.
The sequence a1,a2,...,an is lexicographically smaller than sequence b1,b2,...,bn, if there is such number i from 1 to n, that ak=bk for 1≤k<i and ai<bi.
Peter would like to find another sequence b1,b2,...,bn in such a manner that F(a1,a2,...,an) equals to F(b1,b2,...,bn). Among all the possible sequences consisting of only positive integers, Peter wants the lexicographically smallest one.
The sequence a1,a2,...,an is lexicographically smaller than sequence b1,b2,...,bn, if there is such number i from 1 to n, that ak=bk for 1≤k<i and ai<bi.
Input
There are multiple test cases. The first line of input contains an integer
T,
indicating the number of test cases. For each test case:
The first contains an integer n (1≤n≤100000) -- the length of the sequence. The second line contains n integers a1,a2,...,an (1≤ai≤109).
The first contains an integer n (1≤n≤100000) -- the length of the sequence. The second line contains n integers a1,a2,...,an (1≤ai≤109).
Output
For each test case, output
n
integers b1,b2,...,bn
(1≤bi≤109)
denoting the lexicographically smallest sequence.
Sample Input
3 1 10 5 5 4 3 2 1 3 1 3 5
Sample Output
1 1 1 1 1 1 1 2 3
寻找与原序列每个元素的最长递增子序列相等的序列的最小值
例如 5 4 3 2 1
每个元素的最长递增子序列都是1,所以序列中每个元素的LIS都是1的序列最小值为1 1 1 1 1(严格递增)
即求出原序列中以每个元素结尾的LIS长度
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 100010
#define inf 0x3f3f3f3f
#define ll long long
using namespace std;
int dp[maxn], cnt[maxn], vis[maxn];
int ans, n;
void lis(){
int flag;
ans = 0;
for(int i = 1; i <= n; i++){
if(dp[ans] < cnt[i]){
flag = ++ans;
}
else{
flag = lower_bound(dp+1, dp+ans+1, cnt[i])-dp;
}
dp[flag] = cnt[i];
vis[i] = flag;
}
}
int main(){
int t, num;
scanf("%d", &t);
while(t--){
memset(dp, 0, sizeof(dp));
scanf("%d", &n);
for(int i = 1; i <= n; i++){
scanf("%d", &cnt[i]);
}
lis();
for(int i = 1; i <= n; i++){
printf("%d%c", vis[i], i == n ? '\n' : ' ');
}
}
return 0;
}