例如,我们经常会使用Mnist手写数据集,而我们经常使用的方式就是利用一下代码进行应用:
mnist = tf.keras.datasets.mnist
(x_train,y_train),(x_test,y_test)=mnist.load_data()
这次我们自己写一个函数来对文件进行读取,返回目标值与特征值。
import tensorflow as tf
from PIL import Image
import numpy as np
import os
train_path = 'E:/深度学习下数据/train-images.idx3-ubyte'
train_txt = 'E:/深度学习下数据/train-labels.idx1-ubyte'
x_train_savepath = 'E:/深度学习下数据/mnist_x_train.npy' # 训练集存储文件
y_train_savepath = 'E:/深度学习下数据/mnist_y_train.npy' # 训练集标签存储文件
test_path = 'E:/深度学习下数据/t10k-images.idx3-ubyte'
test_txt = 'E:/深度学习下数据/t10k-labels.idx1-ubyte'
x_test_savepath = 'E:/深度学习下数据/mnist_x_test.npy'
y_test_savepath = 'E:/深度学习下数据/mnist_y_test.npy'
def generateds(path, txt):
f = open(txt, 'r')
contents = f.readlines() # 读取文件中所有的行
f.close()
x, y_ = [], [] # 建立空列表
for content in contents: # 逐行取出
value = content.split() # 以空格分开,图片路径为value[0],标签文件为value【1】,存入列表
image_path = path + value[0] # 拼出图片的路径和文件名
img = Image.open(image_path)
img = np.array(img.convert('L')) # 图片变为8为宽灰度值的np.array格式
img = img/255. # 数据归一化实现预处理
x.append(img) # 归一化后的数据贴到列表x
y_.append(value[1]) # 夫i异化后的标签贴到列表y_
print("loading:", + content) # 打印状态提示
x = np.array(x) # 变为np.array格式
y_ = np.array(y_)
y_ = y_.astype(np.int64) # 变为64位整数
return x, y_
if os.path.exists(x_train_savepath) and os.path.exists(y_train_savepath)\
and os.path.exists(x_test_savepath) and os.path.exists(y_test_savepath):
print("_______________________Load Datasets_____________________")
x_train_save = np.load(x_train_savepath)
y_train = np.load(y_train_savepath)
x_test_save = np.load(x_test_savepath)
y_test = np.load(y_test_savepath)
x_train = np.reshape(x_train_save, (len(x_train_save), 28, 28))
x_test = np.reshape(x_test_save, len(x_test_save), 28, 28)
else:
print("_______________________Generate Datasets__________________")
x_train, y_train = generateds(train_path, train_txt)
x_test, y_test = generateds(test_path, test_txt)
print("_______________________Sava Datasets______________________")
x_train_save = np.reshape(x_train, (len(x_train), -1))
x_test_save = np.reshape(x_test,(len(x_test), -1))
np.save(x_train_savepath, x_train_save)
np.save(y_train_savepath, y_train)
np.save(x_test_savepath, x_test_save)
np.save(y_test_savepath, y_test)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()
本文介绍了一种手动读取MNIST手写数据集的方法,并使用TensorFlow搭建了一个简单的神经网络模型进行训练。通过定义函数从原始文件中加载训练和测试数据,再进行归一化等预处理步骤,最后利用模型完成对手写数字的识别任务。
600

被折叠的 条评论
为什么被折叠?



