The two-phase process behind LLMs’ responses

This relatively easier post will be the opportunity to warm up by getting back to the basics of the Transformer architecture and text generation using Transformer-based decoders. Most importantly, I will establish the vocabulary I will use throughout the series. I highlight in bold the terms I personally favor. You will in particular learn about the two phases of text generation: the initiation phase and the generation (or decoding) phase.

First, a little Transformer refresher. For simplicity, let’s assume that we process a single sequence at a time (i.e. batch size is 1). In the figure below I pictured the main layers of a vanilla Transformer-based decoder (Figure 1) used to generate an output token from a sequence of input tokens.

Figure 1 —Outline of a Transformer decoder model

Notice that the decoder itself does not output tokens but logits (as many as the vocabulary size). By the way, the last layer outputting the logits is often called the language model head or LM head. Deriving the token from the logits is the job of a heuristic called (token) search strategy, generation strategy or decoding strategy. Common

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张博208

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值