Continue PreTrain

部署运行你感兴趣的模型镜像

您可能感兴趣的与本文相关的镜像

Llama Factory

Llama Factory

模型微调
LLama-Factory

LLaMA Factory 是一个简单易用且高效的大型语言模型(Large Language Model)训练与微调平台。通过 LLaMA Factory,可以在无需编写任何代码的前提下,在本地完成上百种预训练模型的微调

(.venv) PS E:\UST> python train.py --dataroot ./datasets/AVIID --name AVIID_USTNet_Use_Pretrain --pretrain_name AVIID_USTNet_Pretrain --which_epoch 200 --use_pretrain True --epochs_warmup 200 --epochs_anneal 200 --gpu_ids 0 ------------ Options ------------- batchSize: 8 checkpoints_dir: ./checkpoints constant: 100 continue_train: False dataroot: ./datasets/AVIID dataset_mode: unaligned display_freq: 10 display_id: 0 display_port: 8097 display_single_pane_ncols: 0 display_winsize: 256 epoch_count: 1 epochs_anneal: 200 epochs_warmup: 200 fineSize: 256 gan_mode: lsgan geometry: rot gpu_ids: [0] gradient_penalty: True identity: 0.5 input_nc: 3 isTrain: True lambda_A: 10.0 lambda_AB: 10.0 lambda_B: 10.0 lambda_G: 1.0 lambda_gc: 2.0 lambda_gp: 1e-05 loadSize: 288 lr: 0.0001 lr_decay_iters: 50 lr_policy: linear max_dataset_size: inf model: USTNet nThreads: 16 n_layers_D: 3 name: AVIID_USTNet_Use_Pretrain ndf: 64 ngf: 64 no_dropout: False no_flip: False no_html: False norm: instance output_nc: 3 phase: train pool_size: 50 pretrain_name: AVIID_USTNet_Pretrain print_freq: 10 resize_or_crop: resize_and_crop save_epoch_freq: 100 save_latest_freq: 5000 serial_batches: False update_html_freq: 1000 use_pretrain: True which_direction: AtoB which_epoch: 200 -------------- End ---------------- CustomDatasetDataLoader dataset [UnalignedDataset] was created #training images = 2412 USTNet E:\UST\.venv\Lib\site-packages\timm\models\layers\__init__.py:48: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers warnings.warn(f"Importing from {__name__} is deprecated, please import via timm.layers", FutureWarning) E:\UST\models\USTNet.py:24: UserWarning: The torch.cuda.*DtypeTensor constructors are no longer recommended. It's best to use methods such as torch.tensor(data, dtype=*, device='cuda') to create tensors. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\torch\csrc\tensor\python_tensor.cpp:80.) self.input_A = self.Tensor(nb, opt.input_nc, size, size) E:\UST\.venv\Lib\site-packages\torch\functional.py:505: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at C:\actions-runner\_work\pytorch\pytorch\pytorch\aten\src\ATen\native\TensorShape.cpp:4319.) return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined] load model from:./checkpoints\AVIID_USTNet_Pretrain Traceback (most recent call last): File "E:\UST\train.py", line 12, in <module> model = create_model(opt) ^^^^^^^^^^^^^^^^^ File "E:\UST\models\models.py", line 14, in create_model model.initialize(opt) File "E:\UST\models\USTNet.py", line 43, in initialize self.load_pretrain_network(self.netG_AB, 'G_AB', which_epoch, opt.gpu_ids) File "E:\UST\models\base_model.py", line 81, in load_pretrain_network network.load_state_dict(torch.load(save_path)) ^^^^^^^^^^^^^^^^^^^^^ File "E:\UST\.venv\Lib\site-packages\torch\serialization.py", line 1484, in load with _open_file_like(f, "rb") as opened_file: ^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\UST\.venv\Lib\site-packages\torch\serialization.py", line 759, in _open_file_like return _open_file(name_or_buffer, mode) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "E:\UST\.venv\Lib\site-packages\torch\serialization.py", line 740, in __init__ super().__init__(open(name, mode)) ^^^^^^^^^^^^^^^^ FileNotFoundError: [Errno 2] No such file or directory: './checkpoints\\AVIID_USTNet_Pretrain\\200_net_G_AB.pth' (.venv) PS E:\UST>
最新发布
11-27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张博208

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值