Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 210999 Accepted Submission(s): 49522
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
Author
大体题意:
给你一个整数数组,求的一个连续子序列,使得连续子序列和最大,并且输出子序列的和 和起始位置和终止位置!
思路:
据教练指导,入门DP 的第一题!
设计:
dp[i] 表示1.2.3....i 中最大值。
那么转移方程:
当dp[i-1] < 0时,那么dp[i]最优解肯定是a[i]了,
否则 就是dp[i-1] + a[i]:
然后遍历一遍求得最大值 并且找到最右端位置,然后在从最右端向左找 找到最左端
注意:
找最左端时,不要发现一个最左端就break 要等他找完,因为可能不是最长!
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 10;
int dp[maxn],a[maxn];
int main(){
int T,cnt = 0;
scanf("%d",&T);
while(T--){
memset(dp,0,sizeof dp);
int n;
scanf("%d",&n);
for (int i = 1; i <= n; ++i)scanf("%d",&a[i]);
dp[1]=a[1];
for (int i = 2; i <= n; ++i){
if (dp[i-1] < 0)dp[i] = a[i];
else dp[i] = dp[i-1] + a[i];
}
int tmp_max = dp[1],r = 1;// r 一定要初始化为1,可能全是负数!!
for (int i = 2; i <= n; ++i){
if (dp[i] > tmp_max){
tmp_max = dp[i];
r = i;
}
}
int t = 0,l;
for (int i = r; i >= 1; --i){
t += a[i];
if (t == tmp_max)l = i;
}
if (cnt++)printf("\n");
printf("Case %d:\n",cnt);
printf("%d %d %d\n",tmp_max,l,r);
}
return 0;
}