机器学习:基于Apriori算法对中医病症辩证关联规则分析

本文介绍了如何运用Apriori算法分析中医病症辩证的关联规则。通过设定最小支持度阈值,算法从频繁项集生成关联规则,揭示五脏六腑间的相生相克关系。实验涉及数据预处理、apyori与mlxtend库的使用,以发现疾病间的潜在关联。

在这里插入图片描述

系列文章目录

作者:i阿极

作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页

😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍

📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪


大家好,我i阿极。喜欢本专栏的小伙伴,请多多支持

专栏案例:机器学习案例
机器学习(一):线性回归之最小二乘法
机器学习(二):线性回归之梯度下降法
机器学习(三):基于线性回归对波士顿房价预测
机器学习(四):基于KNN算法对鸢尾花类别进行分类预测
机器学习(五):基于KNN模型对高炉发电量进行回归预测分析
机器学习(六):基于高斯贝叶斯对面部皮肤进行预测分析
机器学习(七):基于多项式贝叶斯对蘑菇毒性分类预测分析
机器学习(八):基于PCA对人脸识别数据降维并建立KNN模型检验
机器学习(十四):基于逻辑回归对超市销售活动预测分析
机器学习(十五):基于神经网络对用户评论情感分析预测
机器学习(十六):基于Kmeans聚类算法对银行客户进行分类
机器学习(十七):基于支持向量机(SVM)进行人脸识别预测
机器学习(十八):基于逻辑回归对优惠券使用情况预测分析
机器学习(十九):基于逻辑回归对某银行客户违约预测分析
机器学习(二十):LightGBM算法原理(附案例实战)
机器学习(二十一):基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测
机器学习(二十二):基于逻辑回归(Logistic Regression)对股票客户流失预测分析


1、Apriori算法模型原理

Apriori算法是一种经典的关联规则挖掘算法,用于发现数据集中频繁出现的项集和关联规则。该算法基于一种称为"先验原理"的观念,即如果一个项集是频繁的,那么它的所有子集也必须是频繁的。通过利用这个原理,Apriori算法逐步构建频繁项集,并生成关联规则。

下面是Apriori算法的详细步骤:

  • 确定最小支持度阈值: 用户需要指定一个最小支持度阈值,用于筛选出频繁项集。支持度定义为某个项集在数据集中出现的频率。

  • 生成候选项集: 初始时,算法将每个项作为单独的候选项集。然后,通过扫描数据集,计算每个候选项集的支持度,并筛选出满足最小支持度阈值的频繁一项集。

  • 组合生成更高阶的候选项集: 对于频繁一项集,算法使用连接操作生成候选项集。连接操作是指将两个频繁项集合并为一个更高阶的候选项集。具体来说,对于每个频繁k-1项集,算法将其按字典序排序,并两两组合生成候选k项集。

  • 剪枝步骤: 在生成候选项集后,需要进行剪枝操作以减少计算量。剪枝操作通过检查候选项集的所有(k-1)项子集是否都是频繁项集来实现。如果存在某个(k-1)项子集不是频繁项集,则将候选项集删除。

  • 计算候选项集的支持度: 对剪枝后的候选项集,再次扫描数据集,计算它们的支持度,并筛选出满足最小支持度阈值的频繁项集。

  • 重复步骤3至步骤5: 重复进行组合生成候选项集、剪枝和计算支持度的步骤,直到无法生成更高阶的候选项集为止。

评论 115
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

i阿极

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值