机器学习:基于朴素贝叶斯对花瓣花萼的宽度和长度分类预测
作者:i阿极
作者简介:Python领域新星作者、多项比赛获奖者:博主个人首页
😊😊😊如果觉得文章不错或能帮助到你学习,可以点赞👍收藏📁评论📒+关注哦!👍👍👍
📜📜📜如果有小伙伴需要数据集和学习交流,文章下方有交流学习区!一起学习进步!💪
| 专栏案例:机器学习 |
|---|
| 机器学习:基于逻辑回归对某银行客户违约预测分析 |
| 机器学习:学习k-近邻(KNN)模型建立、使用和评价 |
| 机器学习:基于支持向量机(SVM)进行人脸识别预测 |
| 决策树算法分析天气、周末和促销活动对销量的影响 |
| 机器学习:线性回归分析女性身高与体重之间的关系 |
| 机器学习:基于主成分分析(PCA)对数据降维 |
| 机器学习:学习KMeans算法,了解模型创建、使用模型及模型评价 |
文章目录
一、实验目的
1.理解朴素贝叶斯的原理
2.掌握scikit-learn贝叶斯的用法
3.认识可视化工具seaborn
二、实验原理
1.分类问题描述
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法,对于分类问题,其实谁都不会陌生,日常生活中我们每天都进行着分类过程。例如,当你看到一个人,你的脑子下意识判断他是学生还是社会上的人;你可能经常会走在路上对身旁的朋友说“这个人一看就很有钱”之类的话,其实这就是一种分类操作,贝叶斯分类算法,那么分类的数学描述又是什么呢?

其中C叫做类别集合,其中每一个元素是一个类别,而I叫做项集合(特征集合),其中每一个元素是一个待分类项,f叫做分类器。分类算法的内容是要求给定特征,构造分类器f,让我们得出类别。
2.Bayes’ theorem(贝叶斯法则)
在概率论和统计学中,Bayes theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示:

本文介绍了如何使用朴素贝叶斯算法,特别是scikit-learn库中的GaussianNB、MultinomialNB和BernoulliNB,对花瓣和花萼的宽度和长度进行分类预测。通过理解贝叶斯定理,数据预处理,以及构建训练和测试数据集,展示了如何构建和评估分类模型。
订阅专栏 解锁全文
4680

被折叠的 条评论
为什么被折叠?



