82、Understanding Radial Basis Function Networks and Kernel Methods

Understanding Radial Basis Function Networks and Kernel Methods

1. Introduction to Kernel Functions

Kernel functions play a crucial role in various machine - learning algorithms. Here, we’ll explore different types of kernel functions and then dive into radial basis function networks.

1.1 Fisher Kernel

The covariance matrix of the Fisher scores is related to the Fisher kernel. The Fisher kernel corresponds to a whitening of these scores. A simpler approach is to omit the Fisher information matrix and use the non - invariant kernel:
[k(x, x’) = g(\theta, x)^T g(\theta, x’)]
Hofmann (2000) has given an application of Fisher kernels to document retrieval.

1.2 Sigmoidal Kernel

The sigmoidal kernel is defined as:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值