题目大意
给定一棵具有n个节点的树,每条边
1≤n≤104,1≤w≤103
本题开O2……
题目分析
裸的点分治。
二分答案,转化为判定性问题,然后使用点剖的重心树来判定。
每个重心维护重心树子树中所有点到其距离的排序,以及到其上级重心的距离的排序,二分查找即可。
时间复杂度O(nlog2nlog(nw))。
代码实现
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cctype>
using namespace std;
inline int read()
{
int x=0,f=1;
char ch=getchar();
while (!isdigit(ch)) f=ch=='-'?-1:f,ch=getchar();
while (isdigit(ch)) x=x*10+ch-'0',ch=getchar();
return x*f;
}
int buf[30];
inline void write(int x)
{
if (x<0) putchar('-'),x=-x;
for (;x;x/=10) buf[++buf[0]]=x%10;
if (!buf[0]) buf[++buf[0]]=0;
for (;buf[0];putchar('0'+buf[buf[0]--]));
}
const int N=10050;
const int LGN=15;
const int E=N<<1;
const int EL=N<<1;
const int LGEL=15;
int deep[N],top[N],fa[N],pos[N],last[N],que[N],size[N],crf[N],st[N],en[N];
int tov[E],nxt[E],len[E];
int LOG[EL],euler[EL];
int data[2][N*LGN];
int rmq[EL][LGEL];
bool vis[N];
int n,tot,head,tail,cnt,el,lgel,sum;
void insert(int x,int y,int z){tov[++tot]=y,len[tot]=z,nxt[tot]=last[x],last[x]=tot;}
int core(int src)
{
for (head=0,fa[que[tail=1]=src]=0,top[src]=0;head!=tail;)
{
int x=que[++head],i=last[x],y;
for (size[x]=1;i;i=nxt[i]) if ((y=tov[i])!=fa[x]&&!vis[y]) fa[que[++tail]=y]=x,top[y]=top[x]+len[i];
}
for (head=tail;head>1;size[fa[que[head]]]+=size[que[head]],head--);
int ret=0,res=n+1;
for (head=1;head<=tail;head++)
{
int x=que[head],i=last[x],y,tmp=0;
for (;i;i=nxt[i]) if ((y=tov[i])!=fa[x]&&!vis[y]) tmp=max(tmp,size[y]);
tmp=max(tmp,size[src]-size[x]);
if (tmp<res) ret=x,res=tmp;
}
return ret;
}
int build(int c,int f,int delta)
{
fa[c=core(c)]=0;
for (head=0,deep[que[tail=1]=c]=0;head!=tail;)
for (int x=que[++head],i=last[x],y;i;i=nxt[i])
if ((y=tov[i])!=fa[x]&&!vis[y]) deep[que[++tail]=y]=deep[fa[y]=x]+len[i];
st[c]=cnt+1,cnt=en[c]=cnt+tail;
for (head=1;head<=tail;head++) data[0][st[c]+head-1]=deep[que[head]],f?data[1][st[c]+head-1]=top[que[head]]+delta:0;
sort(data[0]+st[c],data[0]+en[c]+1),f?sort(data[1]+st[c],data[1]+en[c]+1),0:0;
vis[c]=1;
for (int i=last[c],y;i;i=nxt[i])
if (!vis[y=tov[i]]) crf[build(y,c,len[i])]=c;
return c;
}
void dfs(int x)
{
rmq[pos[euler[++el]=x]=el][0]=x;
for (int i=last[x],y;i;i=nxt[i])
if ((y=tov[i])!=fa[x]) deep[y]=deep[x]+1,top[y]=top[x]+len[i],fa[y]=x,dfs(y),euler[++el]=x,rmq[el][0]=x;
}
void pre()
{
LOG[1]=0;
for (int i=2;i<=el;i++) LOG[i]=LOG[i-1]+(1<<LOG[i-1]+1==i);
lgel=LOG[el];
for (int j=1;j<=lgel;j++)
for (int i=1;i+(1<<j)-1<=el;i++)
rmq[i][j]=deep[rmq[i][j-1]]<deep[rmq[i+(1<<j-1)][j-1]]?rmq[i][j-1]:rmq[i+(1<<j-1)][j-1];
}
int getrmq(int l,int r)
{
int lgr=LOG[r-l+1];
return deep[rmq[l][lgr]]<deep[rmq[r-(1<<lgr)+1][lgr]]?rmq[l][lgr]:rmq[r-(1<<lgr)+1][lgr];
}
int lca(int x,int y)
{
if ((x=pos[x])>(y=pos[y])) swap(x,y);
return getrmq(x,y);
}
int dist(int x,int y){return top[x]+top[y]-(top[lca(x,y)]<<1);}
int query(bool flag,int x,int y)
{
int l=st[x],r=en[x],mid,ret=l-1;
while (l<=r)
{
mid=l+r>>1;
if (data[flag][mid]<=y) ret=mid,l=mid+1;
else r=mid-1;
}
return ret=ret-st[x]+1;
}
int count(int src,int l)
{
int ret=0;
for (int x=src,y=crf[x];x;x=y,y=crf[x])
{
ret+=query(0,x,l-dist(src,x));
if (y) ret-=query(1,x,l-dist(src,y));
}
return ret;
}
int kth(int x,int k)
{
int l=0,r=sum,mid,ret=-1;
while (l<=r)
{
mid=l+r>>1;
if (count(x,mid)>=k) ret=mid,r=mid-1;
else l=mid+1;
}
return ret;
}
int main()
{
freopen("treekth.in","r",stdin),freopen("treekth.out","w",stdout);
n=read();
for (int i=1,x,y,z;i<n;i++) x=read(),y=read(),z=read(),insert(x,y,z),insert(y,x,z),sum+=z;
build(1,0,0),deep[1]=top[1]=fa[1]=0,dfs(1),pre();
for (int i=1;i<=n;i++) write(kth(i,read())),putchar('\n');
fclose(stdin),fclose(stdout);
return 0;
}