Matrix
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 28406 | Accepted: 10366 |
Description
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.
Output
For each querying output one line, which has an integer representing A[x, y].
There is a blank line between every two continuous test cases.
There is a blank line between every two continuous test cases.
Sample Input
1 2 10 C 2 1 2 2 Q 2 2 C 2 1 2 1 Q 1 1 C 1 1 2 1 C 1 2 1 2 C 1 1 2 2 Q 1 1 C 1 1 2 1 Q 2 1
Sample Output
1 0 0 1
Source
POJ Monthly,Lou Tiancheng
题意:给你一个n*n的矩阵,一开始矩阵全为0,有两种操作,第一种是给定左上角和右下角的下标,把这个子矩形里面的0/1进行互换,第二种是询问某个点的值
解题思路:二维树状数组或者二维线段树即可,二维线段树时,因为是异或和,所以要把当前点到跟的路径上的标记累加,就是标记不下放,统计时计算所有覆盖该点的标记
二维树状数组:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <bitset>
#include <set>
#include <vector>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int sum[1005][1005],n, m;
int lowbit(int x)
{
return x&-x;
}
int getsum(int x, int y)
{
int ans= 0;
for (int i = x; i >0; i -= lowbit(i))
for (int j = y; j >0; j -= lowbit(j))
ans += sum[i][j];
return ans;
}
void add(int x, int y)
{
for (int i = x; i <= n; i += lowbit(i))
for (int j = y; j <= n; j += lowbit(j))
sum[i][j]++;
}
int main()
{
int t;
int x1, x2, y1, y2;
scanf("%d", &t);
while (t--)
{
memset(sum, 0, sizeof sum);
scanf("%d%d", &n, &m);
while (m--)
{
char ch[5];
scanf("%s", ch);
if (ch[0] == 'C')
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
add(x2+1, y2+1);
add(x1, y1);
add(x2+1, y1);
add(x1, y2+1);
}
else
{
scanf("%d%d", &x1, &y1);
printf("%d\n", getsum(x1, y1)%2);
}
}
printf("\n");
}
return 0;
}
二维线段树:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cctype>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
int n, m, ans;
int x1, y1, x2, y2;
char ch[20];
struct node
{
int y[4000];
}x[4000];
void build(int k, int kk, int l, int r)
{
x[k].y[kk] = 0;
if (l == r) return;
int mid = (l + r) / 2;
build(k, kk << 1, l, mid);
build(k, kk << 1 | 1, mid + 1, r);
}
void build(int k, int l, int r)
{
build(k, 1, 1, n);
if (l == r) return;
int mid = (l + r) / 2;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
}
void update(int k, int kk, int l, int r, int ll, int rr)
{
if (l >= ll&&r <= rr)
{
x[k].y[kk] ^= 1;
return;
}
int mid = (l + r) / 2;
if (ll <= mid) update(k, kk << 1, l, mid, ll, rr);
if (rr > mid) update(k, kk << 1 | 1, mid + 1, r, ll, rr);
}
void update(int k, int l, int r, int ll, int rr, int y1, int y2)
{
if (l >= ll&&r <= rr)
{
update(k, 1, 1, n, y1, y2);
return;
}
int mid = (l + r) / 2;
if (ll <= mid) update(k << 1, l, mid, ll, rr, y1, y2);
if (rr > mid) update(k << 1 | 1, mid + 1, r, ll, rr, y1, y2);
}
void query1(int k, int kk, int l, int r, int y)
{
ans ^= x[k].y[kk];
if (l == r) return;
int mid = (l + r) / 2;
if (y <= mid) query1(k, kk << 1, l, mid, y);
else query1(k, kk << 1 | 1, mid + 1, r, y);
}
void query(int k, int l, int r, int x, int y)
{
query1(k, 1, 1, n, y);
if (l == r) return;
int mid = (l + r) / 2;
if (x <= mid) query(k << 1, l, mid, x, y);
else query(k << 1 | 1, mid + 1, r, x, y);
}
int main()
{
int t;
scanf("%d", &t);
while (t--)
{
scanf("%d%d", &n, &m);
build(1, 1, n);
for (int i = 1; i <= m; i++)
{
scanf("%s", ch);
if (ch[0] == 'C')
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
update(1, 1, n, x1, x2, y1, y2);
}
else
{
scanf("%d%d", &x1, &y2);
ans = 0;
query(1, 1, n, x1, y2);
printf("%d\n", ans);
}
}
printf("\n");
}
return 0;
}