OpenCV-最大极值稳定区域MSER分析

最大稳定极值区域MSER是一种类似分水岭图像的分割与匹配算法,它具有仿射不变性。极值区域反映的就是集合中的像素灰度值总大于或小于其邻域区域像素的灰度值。对于最大稳定区域,通过局部阈值集操作,区域内的像素数量变化是最小的。

MSER的基本原理是对一幅灰度图像(灰度值为0~255)取阈值进行二值化处理,阈值从0到255依次递增。阈值的递增类似于分水岭算法中的水面的上升,随着水面的上升,有一些较矮的丘陵会被淹没,如果从天空往下看,则大地分为陆地和水域两个部分,这类似于二值图像。在得到的所有二值图像中,图像中的某些连通区域变化很小,甚至没有变化,则该区域就被称为最大稳定极值区域。这类似于当水面持续上升的时候,有些被水淹没的地方的面积没有变化。

上述做法只能检测出灰度图像的黑色区域,不能检测出白色区域,因此还需要对原图进行反转,然后再进行阈值从0~255的二值化处理过程。这两种操作又分别称为MSER+和MSER-。

MSER是当前认为性能最好的仿射不变性区域的检测方法,其使用不同灰度阈值对图像进行二值化来得到最稳定区域,表现特征有以下三点:对图像灰度仿射变化具有不变性,对区域支持相对灰度变化具有稳定性,对区域不同精细成都的大小区域都能进行检测。

MSER最大极值稳定区域的提取步骤:1.像素点排序2.极值区域生成3.稳定区域判定4.区域你和5.区域归一化


opencv里并没有提取出树的信息,所以先依照opencv的代码介绍ER。ER代表着是图片中一个连通(比如4连通或8连通)区域的集合,此集合内所有的像素值都小于等于某一值,而这个区域内的边界都大于这个值。我们可以把像素的值想象成地势,而把一个ER想象成一个填满水的坑洼的水坑(在这里我们采用4连通)。在这个水坑里,有一个水位淹没了所里面所有的像素但,也就是说这个区域里所有的地势(像素值)都要低于这个水位,并且水也流不出去,因为水盆有个边缘(边缘像素值要高于这个水位)。虽然水流的方式跟现实中有些区别,但是大体意思是一致的,后面会提到。

考虑如下一个简单的3 * 3的一个图片

3

2

2

2

3

1

1

2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值