算法沉淀 —— 动态规划篇(简单多状态dp问题下)
前言
几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此
-
1.、状态表示:通常状态表示分为基本分为以下两种,其中更是以第一种为甚。
以i为结尾
,dp[i] 表示什么,通常为代求问题(具体依题目而定)以i为开始
,dp[i]表示什么,通常为代求问题(具体依题目而定)
-
2、状态转移方程
*以上述的dp[i]意义为以i位置为分界, 通过最近一步来分析和划分问题
,由此来得到一个有关dp[i]的状态转移方程。 -
3、dp表创建,初始化
- 动态规划问题中,如果直接使用状态转移方程通常会伴随着
越界访问
等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
。 - 而
初始化一般分为以下两种:
直接初始化开头的几个值。
一维空间大小+1,下标从1开始;二维增加一行/一列
。
- 动态规划问题中,如果直接使用状态转移方程通常会伴随着
-
4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。
-
5、确定返回值
一、买卖股票的最佳时机含冷冻期
【题目链接】:309. 买卖股票的最佳时机含冷冻期
【题目】:
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
【示例】:
输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]
【分析】:
我们可以定义dp[i]表示第i天结束后,买卖股票的最大利润。但我们发现第i天股票分为3种状态:手中有股票、无股票、处于冷冻区。所以我们可以定义一个(n x 3)的二维数组,其中dp[i][0]表示第i天结束后,手中有股票的最大利润;dp[i][1]表示第i天结束后,手中无股票的最大利润;dp[i][2]表示第i天结束后,股票处于冷冻区的最大利润。
状态转移方程推导:
第i天结束后,手中有股票的情况可由:i-1天结束手中有股票第i天什么都不做、i-1天无股票在第i天买入股票两种情况得到。所以可得状态状态转移方程为 dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
第i天结束后,手中无股票的情况可由::第i-1天结束手中有股票在第i天卖掉股票、第i-1天股票处于冷冻区在第i天什么都不做两种情况得到。所以可得状态状态转移方程:dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);
第i天结束后,股票处于冷冻区只能由第i-1天手中有股票第i天将股票卖出所得。所以可得状态状态转移方程:dp[i][2] = dp[i - 1][0] + prices[i];
初始化:显然当i为0时,状态转移方程不适应,需要特殊处理。这里我们可以将第0天的买卖股票状态直接初始化好(具体参考代码)。然后从第2天开始,填dp表!!
最后返回第n天结束后,返回手中无股票和股票处于冷冻区的最大值即可!!
【代码编写】:
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
vector<vector<int>> dp(n, vector<int>(3));
//初始化
dp[0][0] = -prices[0];//第1天买人股票
//填表
for(int i = 1; i < n; i++)
{
dp[i][0] = max(dp[