算法沉淀 —— 动态规划篇(斐波那契数列模型)

本文详细介绍了动态规划在四个实际问题中的应用,包括计算第N个泰波那契数、三步问题、最小花费爬楼梯以及解码方法,通过状态转移方程和初始化策略解决递归问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法沉淀 —— 动态规划篇(斐波那契数列模型)

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为基本分为以下两种,其中更是以第一种为甚。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程
    *以上述的dp[i]意义为以i位置为分界, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。

  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、第 N 个泰波那契数

【题目链接】:1137. 第 N 个泰波那契数
【题目】:
在这里插入图片描述
【分析】:
 题目要第n个斐波那契数,我们令dp[i]表示第i个斐波那契数。题目中以及给出了状态转移方程:dp[i] = dp[i-1] + dp[i-2] +dp[i-3]。但我们发现当i为0、1、2时显然状态转移方程错误,还会越界访问。所以我们仅需将前3个元素特殊处理,然后在从下标2开始填dp表。最后返回结果即可!
【代码实现】:

class Solution {
   
public:
    int tribonacci(int n) {
   
        if(n == 0)
            return 0;
        else if(n == 1 || n == 2)
            return 1;
        //创建dp表
        vector<int> dp(n + 1);
        //初始化
        dp[0] = 0, dp[1] = dp[2] = 1;
        //填表
        for(int i = 3; i <= n; i++) 
            dp[i] = dp[i - 1] + dp[i - 2
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白debug~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值