Find The Multiple
| Time Limit: 1000MS | Memory Limit: 10000K | |||
| Total Submissions: 19303 | Accepted: 7829 | Special Judge | ||
Description
Given a positive integer n, write a program to find out a nonzero multiple m of n whose decimal representation contains only the digits 0 and 1. You may assume that n is not greater than 200 and there is a corresponding m containing no more than 100 decimal
digits.
Input
The input file may contain multiple test cases. Each line contains a value of n (1 <= n <= 200). A line containing a zero terminates the input.
Output
For each value of n in the input print a line containing the corresponding value of m. The decimal representation of m must not contain more than 100 digits. If there are multiple solutions for a given value of n, any one of them is acceptable.
Sample Input
2 6 19 0
Sample Output
10 100100100100100100 111111111111111111
小结:
今天是假期的最后一天了,好伤心明天不能睡懒觉了,QAQ...
不说废话了,开始做正事吧,做第一题的时候感觉BFS还行,当做第二题的时候感觉世界真的就是一片漆黑,呵呵,依然还有很长的路要走啊,本人。
这道题如果没有参考前辈的做法,可能我完全做不出来啊,后面还需要巩固,我看见有2种做法,其中一种是传统的BFS做法,这个好像不怎么让人提起兴趣,然而另外一种利用同余数定理的做法倒是使我眼前一亮。
大概的思路是这样的:
同余数定理
(a*b)%n = (a%n *b%n)%n
(a+b)%n = (a%n +b%n)%n
于是
(k*10+1)%n==((k%n)*10+1)%n
(k*10)%n==(k%n)*10%n
定理大概就是这样的,然后用数组的参数模拟二进制的十进制表示方法,这样一来就可以避免数组参数不够大的情况了,因为我是第一次遇到这种解法,特此记一笔。
以下是AC代码:
#include<stdio.h>
#include<string.h>
#include<math.h>
#define maxn 9999999
int num[maxn];
int mod[maxn];
int main()
{
int n;
while(scanf("%d",&n),n)
{
mod[0]=0;
mod[1]=1%n;
int i=1;
while(mod[i])
{
i++;
mod[i]=(mod[i/2]*10+i%2)%n;
}
int cur=0;
while(i)
{
mod[cur++]=i%2;
i=i>>1;
}
for(int t=cur-1;t>=0;t--)
{
printf("%d",mod[t]);
}
printf("\n");
}
return 0;
}
677

被折叠的 条评论
为什么被折叠?



