Understanding the Lomb–Scargle Periodogram

  • 本文目的:了解Lomb–Scargle Periodogram的原理 (用来估算不均匀采样数据的周期)
  • 参考文献Understanding the Lomb–Scargle Periodogram思路
    连续傅里叶变换 --> 离散傅里叶变换(均匀采样–> Classifical periodogram (即Schuster periodogram,均匀采样) --> Lomb–Scargle Periodogram 变换(非均匀采样)

1. Introduction

  1. 最小平方频谱分析法
  • 最小平方频谱分析法(英语:Least-squares spectral analysis)是一种利用最小平方法寻找适配于资料点之最佳正弦曲线,以估算频谱的方法。

  • 其数学原理与科学界中最常用的傅立叶分析相似[1][2]。一般而言,傅立叶分析会将间隔较长之讯号的长周期噪声放大,而最小平方频谱分析法则解决了这个问题[3]。

  • 最小平方频谱分析法也称为凡尼切克法(Vaníček method)[4]、隆布法(Lomb method)[3][5]或隆布—史卡构法(Lomb–Scargle method)[2][6][7],分别取名自对其有所贡献的佩特·凡尼切克、尼可拉斯·隆布(Nicholas R. Lomb)[8]以及杰佛瑞·史卡构(Jeffrey D. Scargle)[9]。此外,麦可·科恩伯格(Michael Korenberg)、史考特·陈(Scott Chen)以及大卫·多诺霍等人也曾开发出与之关系密切的其它方法。

  1. Lomb–Scargle method
  • 目的:估算不均匀采样数据的周期
  • time and phase ?? 时间和相位

2. Background: The continuous Fourier Transform

  1. 傅里叶对(Fourier pair)
  • 傅里叶对(Fourier pair)是指在傅里叶变换中,一组时间域信号与其对应的频率域信号之间的关系。傅里叶变换提供了一种将信号从时间域转换到频率域的方法,使我们能够分析信号的频率成分

  • More quantitatively, (a function with a characteristic scale T) will in general have (a Fourier transform with a characteristic scale of 1/T.)

在这里插入图片描述

  1. 功率谱密度(Power Spectral Density,PSD)
  • 功率谱密度(Power Spectral Density,PSD),也会简写为power sectrum。 是描述信号在频域中分布的一个重要概念。它表示单位频率范围内信号的功率。具体来说,PSD提供了信号在不同频率上的功率分布情况,常用于分析信号的频率特性。

  • 作用: quantify the contribtuion of each frequency

  • 主要特点
    单位:PSD的单位通常是功率单位(如瓦特)与频率单位(如赫兹

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值