Description
有一楼梯共M级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第M级,共有多少种走法?
Input
输入数据首先包含一个整数N,表示测试实例的个数,然后是N行数据,每行包含一个整数M(1<=M<=40),表示楼梯的级数
Output
对于每个测试实例,请输出不同走法的数量
Sample Input
2
2
3
Sample Output
1
2
Solution
经典dp,用dp[n]表示上n级的楼梯有多少种方法,显然可以从第n-1级或者第n-2级登上第n级,所以轻易得出转移方程dp[n]=dp[n-1]+dp[n-2]
Code
#include<cstdio>
#include<iostream>
using namespace std;
int main()
{
int dp[44];
dp[0]=dp[1]=1;
for(int i=2;i<44;i++)
dp[i]=dp[i-1]+dp[i-2];
int t;
cin>>t;
while(t--)
{
int temp;
cin>>temp;
cout<<dp[temp-1]<<endl;
}
return 0;
}