2024 信友队 noip 冲刺 9.1

向量

定义

线性代数上,对于一个 n n n 维向量就是一个长度为 n n n 的数组 a a a,其中 a i ∈ F a_i\in F aiF F F F 一般为 R \R RKaTeX parse error: Undefined control sequence: \C at position 1: \̲C̲

运算

数乘

对于向量 α = ( a 1 , a 2 , ⋯   , a n ) \alpha=(a_1,a_2,\cdots,a_n) α=(a1,a2,,an) k ∈ F k\in F kF,定义 k α = ( k a 1 , k a 2 , ⋯   , k a n ) k\alpha=(ka_1,ka_2,\cdots,ka_n) kα=(ka1,ka2,,kan),相当于对 α \alpha α 中每一项乘 k k k​。运算结果为一个向量。

求和

对于向量 α = ( a 1 , ⋯   , a n ) , β = ( b 1 , ⋯   , b n ) \alpha=(a_1,\cdots,a_n),\beta=(b_1,\cdots,b_n) α=(a1,,an),β=(b1,,bn),定义 α + β = ( a 1 + b 1 , ⋯   , a n + b n ) \alpha+\beta=(a_1+b_1,\cdots,a_n+b_n) α+β=(a1+b1,,an+bn),即对应项分别相加。运算结果同上。

内积

对于向量 α , β \alpha,\beta α,β,要求内积运算 ( α , β ) (\alpha,\beta) (α,β) 的结果为 F F F 中的一个数,且满足:

  • 对称性: ( α , β ) = ( β , α ) (\alpha,\beta)=(\beta,\alpha) (α,β)=(β,α)
  • 两个线性性:
    • ( α + γ , β ) = ( α , β ) + ( γ , β ) (\alpha+\gamma,\beta)=(\alpha,\beta)+(\gamma,\beta) (α+γ,β)=(α,β)+(γ,β)
    • 对于 c ∈ F c\in F cF ( c α , β ) = c ( α , β ) (c\alpha,\beta)=c(\alpha,\beta) (cα,β)=c(α,β)
  • 正定性: ( α , α ) ≥ 0 (\alpha,\alpha)\ge 0 (α,α)0,当且仅当 α \alpha α 为零向量时取等号。

F F F R \R R 时,我们一般定义内积运算 ( α , β ) = a 1 b 1 + a 2 b 2 + ⋯ + a n b n (\alpha,\beta)=a_1b_1+a_2b_2+\cdots +a_nb_n (α,β)=a1b1+a2b2++anbn,即对应项相乘后求和;对于二维向量 α , β \alpha,\beta α,β ( α , β ) (\alpha,\beta) (α,β) 即为点积运算 α ⋅ β \alpha\cdot\beta αβ。内积的运算结果为一个属于 F F F 的数。

矩阵

概念

m × n m\times n m×n 个数排列成的 m m m n n n 列矩形数表,称为一个 m × n m\times n m×n 矩阵。矩阵实际上表示的是向量和向量的关系,而一个 n n n 维向量即为一个 n × 1 n\times 1 n×1 的矩阵。
[ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a m 1 ⋯ a m n ] \begin{bmatrix} a_{11}& \cdots& a_{1n}\\ \vdots& \ddots&\vdots \\ a_{m1}& \cdots& a_{mn} \end{bmatrix} a11am1a1namn

运算

数乘、加法

数乘、加法运算与向量类似。

乘法

对于矩阵 A = ( a i j ) m × r , B = ( b i j ) r × n A=(a_{ij})_{m\times r},B=(b_{ij})_{r\times n} A=(aij)m×r,B=(bij)r×n,则令 A B = C = ( c i j ) m × n AB=C=(c_{ij})_{m\times n} AB=C=(cij)m×n,定义
c i j = ∑ k = 1 r a i k × b k j c_{ij}=\sum_{k=1}^r a_{ik}\times b_{kj} cij=k=1raik×bkj
c i j c_{ij} cij 其实就是 a a a 的第 i i i 行与 b b b 的第 j j j 列分别组成的向量求内积。矩阵乘法符合结合律但是不符合交换律。

计算
[ x 1 0 0 x 1 0 0 x ] n \begin{bmatrix}x&1&0\\0&x&1\\0&0&x\end{bmatrix}^n x001x001x n

我们令单位矩阵 I I I 为从左上到右下对角线为 1 1 1 其余为 0 0 0 的矩阵,这里 I = [ 1 0 0 0 1 0 0 0 1 ] I=\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix} I= 100010001 ,单位矩阵满足任何矩阵乘或乘以 I I I 得到的都是这个矩阵。那么
[ x 1 0 0 x 1 0 0 x ] n = ( I x + [ 0 1 0 0 0 1 0 0 0 ] ) n \begin{aligned}\begin{bmatrix}x&1&0\\0&x&1\\0&0&x\end{bmatrix}^n&=\left(Ix+\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}\right)^n\end{aligned} x001x001x n= Ix+ 000100010 n
可以发现后面的矩阵在求立方后就变为全 0 0 0 了,因为 I x Ix Ix 是单位矩阵,满足“交换律”,于是我们考虑二项式展开,只保留前三项即可。过程略。

已知 A 1 = 2 , A 2 = 3 , A n = 4 A n − 2 + 3 A n − 1 A_1=2,A_2=3,A_n=4A_{n-2}+3A_{n-1} A1=2,A2=3,An=4An2+3An1,求 A n A_n An

我们不妨构造矩阵 [ A n − 1 A n ] \begin{bmatrix}A_{n-1}\\A_{n}\end{bmatrix} [An1An],考虑由 [ A n − 2 A n − 1 ] \begin{bmatrix}A_{n-2}\\A_{n-1}\end{bmatrix} [An2An1] 进行矩阵乘法转移。我们构造转移矩阵 [ 0 1 4 3 ] \begin{bmatrix}0&1\\4&3\end{bmatrix} [0413],转移即为
[ A n − 1 A n ] = [ 0 1 4 3 ] × [ A n − 2 A n − 1 ] \begin{bmatrix}A_{n-1}\\A_n\end{bmatrix}=\begin{bmatrix}0&1\\4&3\end{bmatrix}\times \begin{bmatrix}A_{n-2}\\A_{n-1}\end{bmatrix} [An1An]=[0413]×[An2An1]
转移矩阵即可快速幂进行优化。构造过程就考虑矩阵乘法的本质——行向量与列向量的内积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值