题意: 现在需要价格总额为cash的钱,有version种面值的钱币,每种钱币的数目为amount,面值为denomination,求解在小于或等于所需价格总额的情况下所能组成的最大价值总和.
题解:每一种货币面值乘以系数1,2,4,...,2^(k-1), amount-2^k+1,且 k 是满足amount-2^k+1>0的最大整数。例如,如果amout为13,就将面值分别乘以系数1,2,4,6的得到四个值。然后将多重背包转化为01背包。
#include <iostream>
using namespace std;
int dp[100005], c[10001];
int main()
{
int cash, version, denomination, amount;
while ( cin >> cash )
{
int i, j, temp, k = 0;
cin >> version;
for ( i = 0; i < version; i++ )
{
cin >> amount >> denomination;
j = 1;
while ( j <= amount )
{
c[k] = j * denomination;
amount -= j;
j = j * 2;
k++;
}
if ( amount > 0 )
c[k++] = amount * denomination;
}
memset ( dp, 0, sizeof(dp) );
for ( i = 0; i < k; i++ )
{
for ( j = cash; j >= c[i]; j-- )
{
temp = dp[j-c[i]] + c[i];
if ( temp > dp[j] )
dp[j] = temp;
}
}
cout << dp[cash] << endl;
}
return 0;
}