robot_localization包的使用

机器人定位与状态估计
本文详细介绍了robot_localization包的功能,包括支持多种传感器数据输入,如Odometry、PoseWithCovarianceStamped等,以及如何利用ekf_localization和ukf_localization节点进行状态估计。同时,阐述了navsat_transform_node如何将GPS数据转换为UTM坐标,以及其参数设置。

robot_localization包没有限制传感器的数据输入。

支持的状态估计节点数据类型:

• nav_msgs/Odometry
• geometry_msgs/PoseWithCovarianceStamped
• geometry_msgs/TwistWithCovarianceStamped
• sensor_msgs/Imu

状态向量:[x y z α β γ x˙ y˙ z˙ α˙ β˙ γ˙ ˙x˙ ˙y˙ ˙z˙](分别代表线速度,欧拉角,加速度,角加速度)

两种典型使用案例:

  • 融合连续的传感器数据(里程计和IMU)创建局部精确的状态估计
  • 融合连续的传感器数据及全局位姿估计来提供精确而完整的全局状态估计

状态估计节点

  • ekf_localization:扩展卡尔曼滤波
  • ukf_localization:无迹卡尔曼滤波

gps传感器预处理节点

navsat_transform_node:允许用户将地理坐标(纬度和经度)转换为机器人的世界框架(通常是map或odom)

TF树

协方差矩阵(包含初估计方差和噪声方差)

kf_localization_node

指明坐标框架

<param name="map_frame" value="map"/>
<param name="odom_frame" value="odom"/>
<param name="base_link_frame" value="base_link"/>
<param name="world_frame" value="odom"/>

传感器输入

<param name="odom0" value="/controller/odom"/>
<param name="odom1" value="/some/other/odom"/>
<param name="pose0" value="/altitude"/>
<param name="pose1" value="/some/other/pose"/>
<param name="pose2" value="/yet/another/pose"/>
<param name="twist0" value="/optical_flow"/>
<param name="imu0" value="/imu/left"/>
<param name="imu1" value="/imu/right"/>
<param name="imu2" value="/imu/front"/>
<param name="imu3" value="/imu/back"/>

协方差矩阵的输入

噪声方差

process_noise_covariance: [0.05, 0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,
                           0,    0.05, 0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,
                           0,    0,    0.06, 0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,
                           0,    0,    0,    0.03, 0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0,
                           0,    0,    0,    0,    0.03, 0,    0,     0,     0,    0,    0,    0,    0,    0,    0,
                           0,    0,    0,    0,    0,    0.06, 0,     0,     0,    0,    0,    0,    0,    0,    0,
                           0,    0,    0,    0,    0,    0,    0.025, 0,     0,    0,    0,    0,    0,    0,    0,
                           0,    0,    0,    0,    0,    0,    0,     0.025, 0,    0,    0,    0,    0,    0,    0,
                           0,    0,    0,    0,    0,    0,    0,     0,     0.04, 0,    0,    0,    0,    0,    0,
                           0,    0,    0,    0,    0,    0,    0,     0,     0,    0.01, 0,    0,    0,    0,    0,
                           0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0.01, 0,    0,    0,    0,
                           0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0.02, 0,    0,    0,
                           0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0.01, 0,    0,
                           0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0.01, 0,
                           0,    0,    0,    0,    0,    0,    0,     0,     0,    0,    0,    0,    0,    0,    0.015]

估计方差

initial_estimate_covariance: [1e-9, 0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,
                              0,    1e-9, 0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,
                              0,    0,    1e-9, 0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,
                              0,    0,    0,    1e-9, 0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    0,
                              0,    0,    0,    0,    1e-9, 0,    0,    0,    0,    0,     0,     0,     0,    0,    0,
                              0,    0,    0,    0,    0,    1e-9, 0,    0,    0,    0,     0,     0,     0,    0,    0,
                              0,    0,    0,    0,    0,    0,    1e-9, 0,    0,    0,     0,     0,     0,    0,    0,
                              0,    0,    0,    0,    0,    0,    0,    1e-9, 0,    0,     0,     0,     0,    0,    0,
                              0,    0,    0,    0,    0,    0,    0,    0,    1e-9, 0,     0,     0,     0,    0,    0,
                              0,    0,    0,    0,    0,    0,    0,    0,    0,    1e-9,  0,     0,     0,    0,    0,
                              0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     1e-9,  0,     0,    0,    0,
                              0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     1e-9,  0,    0,    0,
                              0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     1e-9, 0,    0,
                              0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    1e-9, 0,
                              0,    0,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,    0,    1e-9]

使用navsat_transform_node

过程

  • 将gps数据转换成UTM坐标
  • 使用初始的UTM坐标,EKF/UKF输出和IMU生成从UTM网格到机器人世界框架的(静态)变换T
  • 使用T变换所有测量的gps数据
  • 将数据发给EKF/UKF

需要的输入:
• nav_msgs/Odometry (EKF输出,需要机器人当前的位置)
• sensor_msgs/Imu (必须有陀螺仪,需要确定全局朝向)
• sensor_msgs/NavSatFix (从导航卫星设备输出)

相关设置

<param name="magnetic_declination_radians" value="0"/>
<param name="yaw_offset" value="0"/>
<param name="zero_altitude" value="true"/>
<param name="broadcast_utm_transform" value="true"/>
<param name="publish_filtered_gps" value="true"/>

 

 

 

### ROS `robot_localization` 使用指南与问题解决 #### 1. 功能概述 `robot_localization` 是一个用于机器人定位的核心功能,支持多传感器数据融合,并采用扩展卡尔曼滤波器(EKF)或无迹卡尔曼滤波器(UKF)进行状态估计[^2]。该能够接收多种类型的 ROS 消息,括 `nav_msgs/Odometry`、`sensor_msgs/Imu`、`geometry_msgs/PoseWithCovarianceStamped` 和 `geometry_msgs/TwistWithCovarianceStamped`[^3]。 #### 2. 安装与依赖 确保已安装 ROS 及其相关依赖。对于 ROS 2 用户,可以通过以下命令安装 `robot_localization` : ```bash sudo apt install ros-<distro>-robot-localization ``` 其中 `<distro>` 需替换为当前使用的 ROS 2 发行版名称,例如 `humble` 或 `foxy`[^1]。 #### 3. 参数配置 根据机器人和传感器的具体情况,调整参数配置文件。以下是常见的配置参数示例: ```yaml frequency: 30.0 sensor_timeout: 0.1 two_d_mode: true transform_time_offset: 0.0 publish_tf: true publish_acceleration: false odom0: /odom imu0: /imu/data odom0_config: [true, true, false, false, false, true, false, false, false, false, false, false, false, false, false] imu0_config: [false, false, false, true, true, true, false, false, false, true, true, true, true, true, true] initial_estimate_covariance: [1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9] ``` #### 4. 启动节点 运行 `robot_localization` 节点时,需要指定配置文件路径。以下是一个启动示例: ```bash ros2 launch robot_localization ekf_template.launch.py ekf_params_file:=/path/to/config.yaml ``` #### 5. 结果可视化 使用 RViz 查看定位结果。在 RViz 中添加 `Odometry` 或 `Pose` 显示类型,并设置相应的 ROS 话题[^2]。 #### 6. 常见问题及解决方法 - **问题:定位精度不足** 解决方法:检查传感器数据是否准确,调整滤波器的协方差矩阵以反映传感器的实际性能[^2]。 - **问题:节点启动失败** 解决方法:确保所有依赖项已正确安装,配置文件路径无误,并且输入的传感器话题有效。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值