Radar Installation

本文介绍了一种基于贪心算法的雷达覆盖优化方案,用于在海岛上安装最少数量的雷达装置,确保所有岛屿都能被有效覆盖。算法通过笛卡尔坐标系定位岛屿,考虑雷达覆盖距离,实现了最小化雷达数量的目标。

描述

假设滑行是无限直线。土地位于海岸线的一侧,另一侧是海洋。每个小岛都位于海边。并且位于滑行的任何雷达装置只能覆盖d距离,因此如果它们之间的距离最多为d,则可以通过半径装置覆盖海中的岛屿。 

我们使用笛卡尔坐标系,定义滑行是x轴。海侧在x轴上方,陆侧在下方。考虑到每个岛屿在海中的位置,并考虑到雷达装置覆盖范围的距离,您的任务是编写一个程序,以找到覆盖所有岛屿的最小数量的雷达装置。注意,岛的位置由其xy坐标表示。 

 
图A雷达装置的示例输入

 

输入

输入包含几个测试用例。每种情况的第一行包含两个整数n(1 <= n <= 1000)和d,其中n是海中岛屿的数量,d是雷达装置的覆盖距离。接下来是n行,每行包含两个整数,表示每个岛的位置坐标。然后是一个空白行来分隔案例。 

输入由包含零对的行终止 

产量

对于每个测试用例输出,一行包含测试用例编号,然后是所需的最少数量的雷达安装。“-1”安装意味着没有解决方案。

样本输入

<span style="color:#000000">3 2 
1 2 
-3 1 
2 1 

1 2 
0 2 

0 0
</span>

样本输出

Case 1: 2
Case 2: 1

想法:贪心题目,雷达在x轴上的话,把每个小岛的坐标按x从小到大的顺序排好,

遍历每个点的时候把点看做圆的左边界,得出雷达X的值,每次圈不住小岛的坐标的时候

更新X的值为那个点为左边界圆心的值。

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1009;
int d,n;
struct point
{
    int x,y;
};
point p[N];

bool cmp( point a, point b){
    return a.x<b.x;
}

double getx(point a){
    return a.x+sqrt(1.0*d*d-1.0*a.y*a.y);
}
int main()
{
    int cas=0;
    while(~scanf("%d%d",&n,&d)&&(n+d)){  //输入n,d  ,0 0 的时候结束
        bool flag=0;
        for(int i=0;i<n;i++){
            scanf("%d%d",&p[i].x,&p[i].y);
            if(p[i].y>d)flag=1;     //直接淘汰:y>d的时候
        }
        if(flag){
            printf("Case %d: -1\n",++cas);
            continue;
        }
        sort(p,p+n,cmp);
        double x=getx(p[0]);   // x 是贪心出的雷达的坐标
        int ans=1;
        for(int i=1;i<n;i++){
            double tmp=getx(p[i]);
            if(p[i].x<x&&x>tmp){
                x=tmp;
                continue;
            }
            if(p[i].y*p[i].y+(p[i].x-x)*(p[i].x-x)<=d*d)
                continue;
            x = getx(p[i]);
            ans++;
        }
        printf("Case %d: %d\n",++cas,ans);
    }
    return 0;
}
1328:Radar Installation 查看 提交 统计 提示 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. Figure A Sample Input of Radar Installations 输入 The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. The input is terminated by a line containing pair of zeros 输出 For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case. 生成c语言代码
最新发布
10-20
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值