本文始发于个人公众号:TechFlow,原创不易,求个关注
今天是LeetCode第28篇,依然是全排列的问题。
如果对全排列不熟悉或者是最近关注的同学可以看一下上一篇文章:
LeetCode就是喜欢这样,把类似的问题放在一起,让你刷的时候一起刷,从而更加深刻地理解。今天的问题同样是全排列,不过稍稍不同的是,我们有一个限制条件不一样,给定的元素当中可能存在重复。但是元素存在重复,我们并不想最后的结果也出现重复,这个时候应该怎么办?
举个例子,比如我们有一个排列是[1, 2, 2].
它的所有排列是[1, 2, 2], [2, 1, 2], [2, 2, 1],但是注意,在之前的做法当中,我们把所有的元素看成是unique的,但是现在这个条件被破坏了。显然我们需要在实现全排列的基础上解决这个问题。
无脑解决
解决的方法有两种,第一种是无脑解决。是的你没有看错,因为我们分析一下就会发现next_permutation循环的方法在这题当中仍然奏效,原因也很简单,因为我们每次用next_permutation求得字典序+1的下一个排列的时候,显然已经去除了重复元素的情况。为什么?因为同样元素换位置字典序是不会变化的。
比如下图当中,我们更换两个2的顺序,整个序列的字典序是没有变化的,要使得字典序变化一定要交换不同的元素。所以这个解法是可行的。

next_permutation是返回当前序列字典序+1的序列的算法,这个算法在之前的文章当中出现过,所以我就不赘述它的原理了,如果你不记得或者是忘记了的话,可以点击下方的链接回顾一下:
LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚
这个解法和上一题的最后一个解法完全一样,连改动都不需要,我们直接把代码copy过来把函数名匹配上就可以提交了。这也是我说这道题无脑的原因。
class Solution:
def get_next(self, nums: List[int]):
"""
Do not return anything, modify nums in-place instead.
"""
# 长度
n = len(nums)
# 记录图中i-1的位置
pos = n - 1
for i in range(n-1, 0, -1):
# 如果降序破坏,说明找到了i
if nums[i] > nums[i-1]:
pos = i-1
break
for i in range(n-1, pos, -1):
# 从最后开始找大于pos位置的
if nums[i] > nums[pos]:
# 先交换元素,在进行翻转
nums[i], nums[pos] = nums[pos],

本文介绍了LeetCode第47题,即全排列问题的进阶版,探讨如何在有重复元素的情况下避免生成重复的排列。文章通过无脑解决(使用next_permutation)和回溯法两种方法来解决问题,并详细解释了如何通过回溯法中的稳定性概念来避免重复。最后提出改进方案,通过排序简化问题,避免使用额外的数据结构。
最低0.47元/天 解锁文章
5万+





