机器学习基础——一文讲懂中文分词算法

本文详细介绍了中文分词的基础知识,包括正向最大匹配、逆向最大匹配、双向最大匹配和统计分词算法。随着深度学习的发展,深度学习分词算法如BiLSTM模型成为提高准确性的新选择。虽然现代有许多开源分词引擎,但理解其工作原理仍然重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前文当中,我们介绍了搜索引擎的大致原理。有错过或者不熟悉的同学,可以点击下方的链接回顾一下前文的内容。

ML基础——搜索引擎基本原理

在介绍爬虫部分的时候,我们知道,爬虫在爬取到网页的内容之后,会先进行一些处理。首先要做的就是过滤掉HTML当中的各种标签信息,只保留最原生的网页内容。之后,程序会对这些文本内容提取关键词。

今天我们就来讲讲关键词提取当中最重要的一个部分——中文分词。

在世界上众多的语言当中,中文算是比较特殊的一种。许多语言自带分词信息,比如英文,机器学习写作machine learning。machine和learning之间自带一个空格作为分隔。但是中文不是这样,汉字之间没有任何分隔符。意味着程序没有办法直接对文本进行分割。

那么我们怎么知道“机器学习”这四个字应该分割成机器和学习而不是机和器学习或者是机器学和习呢?

这就需要中文分词算法。

目前常用的分词算法主要分为两大类,一种是基于词表的规则分词算法。另一种则是在机器学习以及深度学习兴起之后流行起来的统计分词算法。我们先从比较容易理解的规则分词算法开始讲起。

规则分词算法的核心是词表,我们维护一个尽可能大的词表, 当中尽可能多的包含各种中文的词语。在切分语

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值