Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
最先反应的思路是:
将 tree 按照 left - mid - right 和 right - mid - left 各遍历一次。每次遍历时把遇到的值存在 array 里。若是对称,则两个 array 应该是相同的。
这种方法问题在于,额外开出了 O(n) 的空间。
recursively:
其中左子树和右子树对称的条件:
- 两个节点值相等,或者都为空
- 左节点的左子树和右节点的右子树对称
- 左节点的右子树和右节点的左子树对称
public boolean isSymmetricHelper(TreeNode leftNode, TreeNode rightNode) {
if (leftNode == null && rightNode == null) {
return true;
}
if (leftNode == null || rightNode == null) {
return false;
}
if (leftNode.val != rightNode.val) {
return false;
}
return isSymmetricHelper(leftNode.left, rightNode.right)
& isSymmetricHelper(leftNode.right, rightNode.left);
}
public boolean isSymmetric(TreeNode root) {
if (root == null) {
return true;
}
return isSymmetricHelper(root.left, root.right);
}
iteratively:
level - order traverse, 判断每一层是对称的