高斯消元法求矩阵的逆矩阵C语言实现

该博客介绍了如何使用C语言实现一个nn阶方阵的逆矩阵计算。首先阐述了线性代数中的矩阵逆计算原理,即通过将矩阵与单位矩阵拼接,进行初等行变换,当原矩阵变为单位矩阵时,右侧矩阵即为逆矩阵。接着展示了一个C语言程序,该程序接收用户输入的矩阵,计算其逆矩阵并输出结果。程序包含了矩阵的行交换、元素减法和矩阵释放等功能函数。

一 原理

​ 在大学的线性代数课程中我们学习到了,想求一个nnn维方阵的逆矩阵(如果存在的话),一种可行的方法是将其与一个对应维度的单位矩阵进行列的拼接,然后对所拼接的矩阵只进行初等的行变换并且当左侧的矩阵变换成为nnn维的单位矩阵时,右侧的矩阵则为待求的逆矩阵,见式(1-1-1),其中矩阵AAA是一个nnn阶的方阵.


二 C语言实现

#include<stdio.h>
#include<stdlib.h>
float **Matrix_Inv(float **array1, int n);
float Matrix_Det(float **array, int n);
int Matrix_Free(float **tmp, int m, int n);
void swap(float *src, float *dst, int n);
void Vector_Sub(float *src, float *dst, float value, int n);
int main(void)
{
	int n;
	printf("请输入矩阵维度:\n");
	scanf("%d", &n);
	float **array = (float **)malloc(n * sizeof(float *));
	if (array == NULL)
	{
		printf("error :申请数组内存空间失败\n");
		return -1;
	}
	for (int i = 0; i < n; i++)
	{
		array[i] = (float *)malloc(n * sizeof(float));
		if (array[i] == NULL)
		{
			printf("error :申请数组子内存空间失败\n");
			return -1;
		}
	}
	printf("请输入矩阵元素:\n");
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			scanf("%f", &array[i][j]);
		}
	}
	float **Result = Matrix_Inv(array, n);
	printf("逆矩阵元素:\n");
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			printf("%f ", Result[i][j]);
		}
		printf("\n");
	}
	Matrix_Free(Result, n, n);
	return 0;
}
float **Matrix_Inv(float **array1, int n)
{
	int i, flag_det, flag_zero, j;
	flag_det = 0;
	flag_zero = 0;
	float **array = (float **)malloc(n * sizeof(float*));
	float **result = (float **)malloc(n * sizeof(float*));
	float **array1_temp = (float **)malloc(n * sizeof(float*));
	if (array == NULL)
	{
		printf("error in Matrix_Inv:申请空间失败\n");
		return NULL;
	}
	for (i = 0; i < n; i++)
	{
		array[i] = (float *)malloc(2 * n * sizeof(float));
		array1_temp[i] = (float *)malloc(n * sizeof(float));
		result[i] = (float *)malloc(n * sizeof(float));
		if (array[i] == NULL)
		{
			printf("error in Matrix_Inv:申请子空间失败\n");
			return NULL;
		}
	}
	//copy
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			array1_temp[i][j] = array1[i][j];
		}
	}
	for (i = 0; i < n; i++)
	{
		for (j = n; j < 2 * n; j++)
		{
			if (i + n == j)
			{
				array[i][j] = 1;
			}
			else
			{
				array[i][j] = 0;
			}
		}
		for (j = 0; j < n; j++)
		{
			array[i][j] = array1[i][j];
		}
	}
	float temp = Matrix_Det(array1, n);
	if (temp == 0)
	{
		printf("error in Matrix_Inv: 矩阵不可逆\n");
		return NULL;
	}
	else
	{
		for (i = 0; i < n - 1; i++)
		{
			for (j = i; j < n; j++)
			{
				if (array[j][i] != 0)
				{
					if (j == i)
					{
						break;
					}
					else
					{
						swap(array[i], array[j], n);
						flag_det++;
						break;
					}
				}
				else
				{
					flag_zero++;
					if (flag_zero == n - i)
					{
						return 0;
					}
				}
			}
			flag_zero = 0;
			for (j = i + 1; j < n; j++)
			{
				if (array[j][i] == 0)
				{
					continue;
				}
				else
				{
					Vector_Sub(array[j], array[i], array[j][i] / array[i][i], 2 * n);
				}
			}
		}
	}
	for (i = 0; i < n; i++)
	{
		temp = array[i][i];
		for (j = i; j < 2 * n; j++)
		{
			array[i][j] = array[i][j] / temp;
		}
	}
	for (i = 0; i < n - 1; i++)
	{
		for (j = i + 1; j < n; j++)
		{
			Vector_Sub(array[i], array[j], array[i][j], 2 * n);
		}
	}
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			result[i][j] = array[i][j + n];
		}
	}
	Matrix_Free(array, n, n);
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			array1[i][j] = array1_temp[i][j];
		}
	}
	Matrix_Free(array1_temp, n, n);
	return result;
}
float Matrix_Det(float **array, int n)
{
	int i, flag_det, flag_zero, j;
	flag_det = 0;
	flag_zero = 0;
	float temp, sum;
	sum = 1.0;
	//复制一份array
	float **array_temp = (float **)malloc(n * sizeof(float *));
	for (i = 0; i < n; i++)
	{
		array_temp[i] = (float *)malloc(n * sizeof(float));
	}
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			array_temp[i][j] = array[i][j];
		}
	}
	for (i = 0; i < n - 1; i++)
	{
		for (j = i; j < n; j++)
		{
			if (array[j][i] != 0)
			{
				if (j == i)
				{
					break;
				}
				else
				{
					swap(array[i], array[j], n);
					flag_det++;
					break;
				}
			}
			else
			{
				flag_zero++;
				if (flag_zero == n - i)
				{
					return 0;
				}
			}
		}
		flag_zero = 0;
		for (j = i + 1; j < n; j++)
		{
			if (array[j][i] == 0)
			{
				continue;
			}
			else
			{
				Vector_Sub(array[j], array[i], array[j][i] / array[i][i], n);
			}
		}
	}
	for (i = 0; i < n; i++)
	{
		sum = sum*array[i][i] * pow(-1, flag_det);
	}
	for (i = 0; i < n; i++)
	{
		for (j = 0; j < n; j++)
		{
			array[i][j] = array_temp[i][j];
		}
	}
	Matrix_Free(array_temp, n, n);
	return sum;
}
void swap(float *src, float *dst, int n)
{
	int i;
	float temp;
	for (i = 0; i < n; i++)
	{
		temp = src[i];
		src[i] = dst[i];
		dst[i] = temp;
	}
}
void Vector_Sub(float *src, float *dst, float value, int n)
{
	int i;
	for (i = 0; i < n; i++)
	{
		src[i] = src[i] - dst[i] * value;
	}
}
int Matrix_Free(float **tmp, int m, int n)
{
	int i, j;
	if (tmp == NULL)
	{
		return(1);
	}
	for (i = 0; i < m; i++)
	{
		if (tmp[i] != NULL)
		{
			free(tmp[i]);
			tmp[i] = NULL;
		}
	}
	if (tmp != NULL)
	{
		free(tmp);
		tmp = NULL;
	}
	return(0);
}

三 结果

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值