kuangbin专题八 UVA10766 (生成树计数)Organising the Organisation(请无视这篇文章)

题意:
给出n,m,k,代表一家公司有n个部门,编号1到n,有m组关系,表示i和j不能直接联通,k代表主管部门,问你有多少种分层方案。另外,这道题的k可以忽略掉,所以他的范围完全是吓唬人的。
题解:
抱歉,这道题我真的无法弄的通俗的说出来,因为这个设计线性代数,我线性代数考试的时候完全是临时抱佛脚的,导致我不太弄懂怎么个弄法,尽管是那个道理,那个意思,但是感觉矩阵没好好懂,还是不明白,所以这篇文章就当是给我自己看的,请大家绕道而行去看别的好的博客。
大佬的解说:

参考一下这个论文:https://wenku.baidu.com/view/0c086741be1e650e52ea990e.html

生成树计数:基尔霍夫矩阵树定理

无向图的基尔霍夫矩阵: 对角线上表示每个点的度数,若ij之间有边则矩阵ij处为-1

无向图的生成树的数目为: 任意一个n-1阶主子式的行列式的绝对值.

思路:

参考周冬的《生成树的计数及其应用》。就是Matrix-Tree定理的应用。

对于一个无向图G,它的生成树个数等于其Kirchhoff矩阵任何一个n-1阶主子式的行列式的绝对值。

所谓n-1阶主子式,就是对于任意一个r,将C的第r行和第r列同时删去后的新矩阵,用Cr表示。

Kirchhoff矩阵:对于无向图G,它的Kirchhoff矩阵C定义为它的度数矩阵D减去它的邻接矩阵A。
题外话:
操,之前参考的那个模板是错误的,只是过了这道题,换个题目就不行,坑了我一上午,去用别的模板就过了,看了假博客是真的难受啊。。操,现在就换过来

#include<stdio.h>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long int
const int MAXN=55;
LL A[MAXN][MAXN];
LL B[MAXN][MAXN];
LL determinant(int n)
{
    LL res=1;
    for(int i=1;i<=n;i++)
    {
        if(!B[i][i])
        {
            bool flag=false;
            for(int j=i+1;j<=n;j++)
            {
                if(B[j][i])
                {
                    flag=true;
                    for(int k=i;k<n;k++)
                    {
                        swap(B[i][k],B[j][k]);
                    }
                    res=-res;
                    break;
                }
            }
            if(!flag)
            return 0;
        }

        for(int j=i+1;j<=n;j++)
        {
            while(B[j][i])
            {
                LL t=B[i][i]/B[j][i];
                for(int k=i;k<=n;k++)
                {
                    B[i][k]=B[i][k]-t*B[j][k];
                    swap(B[i][k],B[j][k]);
                }
                res=-res;
            }
        }
        res*=B[i][i];
    }
    return res;
}
int main()
{
    int n,m,k;
    while(~scanf("%d%d%d",&n,&m,&k))//这个k没卵用,完全可以无视 
    {   
        memset(A,0,sizeof(A));
        memset(B,0,sizeof(B));
        for(int i=1;i<=m;i++)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            A[a][b]=A[b][a]=1;
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i!=j&&!A[i][j])
                {
                    B[i][i]++;
                    B[i][j]=-1;//减去邻接矩阵 
                }
            }
        }
        n=n-1;
        LL ans=determinant(n); 
        printf("%lld\n",ans);
    }
}
<think>好的,我需要帮助用户了解Kuangbin的划分树相关资料或教程。首先,我要明确划分树的基本概念,确保自己理解正确。划分树是一种基于线段树的数据结构,主要用于解决区间第K小查询问题。它的核心思想是将区间递归划分,并在每个节点保存排序后的子区间,从而快速定位目标值。 接下来,我需要查阅用户提供的引用内容,看看是否有相关引用可以支持回答。引用[1]提到树链剖分,虽然不直接相关,但可能涉及树结构的处理。引用[2]和[3]讨论了树状数组和线段树在树结构中的应用,这可能与划分树的空间复杂度或实现细节有关。引用[4]关于Tarjan算法,可能与划分树的应用场景不同,暂时不考虑。 然后,我需要组织回答结构。用户希望了解Kuangbin的划分树实现,可能包括算法原理、实现步骤、代码示例以及复杂度分析。根据系统级指令,要使用正确的中文和LaTeX格式,例如数学表达式用$...$,独立公式用$$...$$。 考虑到用户可能需要代码示例,我需要编写Python或伪代码来展示划分树的构建和查询过程。同时,要确保引用相关文献,比如引用[3]提到的线段树家族处理子链的能力,可能在划分树的优化中有所体现。 另外,用户要求生成相关问题,我需要围绕划分树的应用、优化、复杂度等方面提出问题。例如,划分树与其他数据结构(如线段树)的区别,或者如何处理动态数据等。 最后,检查所有LaTeX语法是否正确,如区间划分的数学表达式是否正确使用$符号,代码块是否用三个反引号标注,引用标识是否自然添加在相关段落末尾。确保回答结构清晰,分步骤解释划分树的原理和实现,帮助用户逐步理解。</think>### Kuangbin划分树详解 划分树(Partition Tree)是一种基于线段树的扩展数据结构,主要用于解决**静态区间第K小查询**问题。其核心思想是将区间递归划分,并在每个节点保存排序后的子区间信息,利用二分思想快速定位目标值。 #### 一、算法原理 1. **预处理阶段**: - 将原始数组$[a_1,a_2,...,a_n]$排序得到$sorted\_arr$ - 递归地将当前区间划分为左右子区间: $$left\_part = [sorted\_arr中前mid个元素]$$ $$right\_part = [sorted\_arr中剩余元素]$$ - 记录每个元素在划分过程中进入左子区间的次数(通过`to_left`数组) 2. **查询阶段**: - 根据当前节点的划分信息,判断目标值在左/右子区间 - 通过`to_left`数组快速计算子区间内的元素数量 #### 二、代码实现(Python示例) ```python class PartitionTree: def __init__(self, arr): self.n = len(arr) self.tree = [] self.to_left = [] sorted_arr = sorted(arr) self.build(0, 0, self.n-1, arr, sorted_arr) def build(self, depth, l, r, arr, sorted_arr): if l == r: if len(self.tree) <= depth: self.tree.append([]) self.to_left.append([0]*(self.n+1)) self.tree[depth].append(arr[l]) return # 划分过程(关键步骤) mid = (l + r) // 2 median = sorted_arr[mid] # 统计进入左子树的元素数量[^3] to_left = 0 left_part, right_part = [], [] for num in arr[l:r+1]: if num < median or (num == median and to_left <= mid - l): left_part.append(num) to_left += 1 else: right_part.append(num) # 合并左右部分 merged = left_part + right_part # 存储当前层数据 if len(self.tree) <= depth: self.tree.append([]) self.to_left.append([0]*(self.n+1)) self.tree[depth][l:r+1] = merged self.to_left[depth][l] = 0 cnt = 0 for i in range(l, r+1): if merged[i-l] < median or (merged[i-l] == median and cnt <= mid - l): cnt += 1 self.to_left[depth][i+1] = cnt # 递归构建子树 self.build(depth+1, l, mid, merged[:mid-l+1], sorted_arr) self.build(depth+1, mid+1, r, merged[mid-l+1:], sorted_arr) ``` #### 三、复杂度分析 - 预处理时间复杂度:$O(n \log n)$ - 查询时间复杂度:$O(\log n)$ - 空间复杂度:$O(n \log n)$(与线段树的空间消耗类似)[^2] #### 四、应用场景 1. 静态区间第K小查询(如OJ题目POJ2104) 2. 高维空间最近邻搜索的降维处理 3. 数据压缩中的分块编码
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值