POJ3126,Prime Path,想漏了一点,坑了好久

本文探讨了素数转换问题,即如何以最低成本将一个四位素数转换为另一个四位素数,仅允许改变一个数字位置且每步都必须保持素数属性。通过使用BFS算法解决此问题,并详细解释了解决步骤和关键点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Prime Path

Description

The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices. 
— It is a matter of security to change such things every now and then, to keep the enemy in the dark. 
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know! 
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door. 
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime! 
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds. 
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime. 

Now, the minister of finance, who had been eavesdropping, intervened. 
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound. 
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you? 
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above. 
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.

Input

One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).

Output

One line for each case, either with a number stating the minimal cost or containing the word Impossible.

Sample Input

3
1033 8179
1373 8017
1033 1033

Sample Output

6
7
0

分析:

题意就是从已知的一个素数(四位)改变到另一个给出的素数(四位),但每次只能改变一个位数,还要保证改变中的每一个中间数都要是素数...(坑爹的部长= =)

STL提供了这么方便的queue没理由不用不是。。。这里的判断素数多写了几行貌似能省一点时间= =。关键是后一个数的生成,考虑个十百千位,每一位有10种情况,

也就是40入口的bfs...但在个位可以只考虑奇数...忘了中间两位可以用0填,导致测试的一组数据第一趟循环找不到下一个结点进队,头结点又出队,直接导致下一趟对空队列进行front(),操作停止运行...调试到夜里两点多还找不出原因啊操,最后还是写了一个生成已知数的下一个素数的程序找出只比那个数大一个数的素数测试发现百位还是十位是0......


code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
using namespace std;
int a,b;
typedef struct Node
{
    int x,step;
}Node;
bool IsPrime(int digit)
{
	if(digit==2 || digit==3)
		return true;
	else if(digit<=1 || digit%2==0)
		return false;
	else if(digit>3)
	{
		for(int i=3;i*i<=digit;i+=2)
			if(digit%i==0)
				return false;
		return true;
	}
}
bool vis[10000];
void bfs()
{
    queue<Node> q;
    while(!q.empty())
        q.pop();
    Node first={a,0};
    q.push(first);
    vis[a]=true;
    while(!q.empty())
    {

        Node tmp=q.front();
        if(tmp.x==b)
        {
            printf("%d\n",tmp.step);
            return;
        }
        for(int i=1;i<10;i+=2)//个位
        {
            Node tmp1;
            tmp1.x=tmp.x/10*10+i;
            if(!vis[tmp1.x]&&IsPrime(tmp1.x))
            {
                vis[tmp1.x]=true;
                tmp1.step=tmp.step+1;
                q.push(tmp1);
            }
        }
        for(int i=0;i<10;i++)//十位
        {
            Node tmp2;
            tmp2.x=tmp.x%10+tmp.x/100*100+i*10;
            if(tmp2.x!=tmp.x&&!vis[tmp2.x]&&IsPrime(tmp2.x))
            {
                vis[tmp2.x]=true;
                tmp2.step=tmp.step+1;
                q.push(tmp2);
            }
        }
        for(int i=0;i<10;i++)//百位
        {
            Node tmp3;
            tmp3.x=tmp.x%100+tmp.x/1000*1000+i*100;
            if(tmp3.x!=tmp.x&&!vis[tmp3.x]&&IsPrime(tmp3.x))
            {
                vis[tmp3.x]=true;
                tmp3.step=tmp.step+1;
                q.push(tmp3);
            }
        }
        for(int i=1;i<10;i++)//千位
        {
            Node tmp4;
            tmp4.x=i*1000+tmp.x%1000;
            if(tmp4.x!=tmp.x&&!vis[tmp4.x]&&IsPrime(tmp4.x))
            {
                vis[tmp4.x]=true;
                tmp4.step=tmp.step+1;
                q.push(tmp4);
            }
        }
        q.pop();
    }
    printf("Impossible\n");
    return;
}
int main()
{
    int n;
    scanf("%d",&n);
    while(n--)
    {
        memset(vis,false,sizeof(vis));
        scanf("%d %d",&a,&b);
        bfs();
    }
    return 0;
}


资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在当今的软件开发领域,自动化构建与发布是提升开发效率和项目质量的关键环节。Jenkins Pipeline作为一种强大的自动化工具,能够有效助力Java项目的快速构建、测试及部署。本文将详细介绍如何利用Jenkins Pipeline实现Java项目的自动化构建与发布。 Jenkins Pipeline简介 Jenkins Pipeline是运行在Jenkins上的一套工作流框架,它将原本分散在单个或多个节点上独立运行的任务串联起来,实现复杂流程的编排与可视化。它是Jenkins 2.X的核心特性之一,推动了Jenkins从持续集成(CI)向持续交付(CD)及DevOps的转变。 创建Pipeline项目 要使用Jenkins Pipeline自动化构建发布Java项目,首先需要创建Pipeline项目。具体步骤如下: 登录Jenkins,点击“新建项”,选择“Pipeline”。 输入项目名称和描述,点击“确定”。 在Pipeline脚本中定义项目字典、发版脚本和预发布脚本。 编写Pipeline脚本 Pipeline脚本是Jenkins Pipeline的核心,用于定义自动化构建和发布的流程。以下是一个简单的Pipeline脚本示例: 在上述脚本中,定义了四个阶段:Checkout、Build、Push package和Deploy/Rollback。每个阶段都可以根据实际需求进行配置和调整。 通过Jenkins Pipeline自动化构建发布Java项目,可以显著提升开发效率和项目质量。借助Pipeline,我们能够轻松实现自动化构建、测试和部署,从而提高项目的整体质量和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值