Prime Path
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 32181 | Accepted: 17439 |
Description
The ministers of the cabinet were quite upset by the message from the Chief of Security stating that they would all have to change the four-digit room numbers on their offices.
— It is a matter of security to change such things every now and then, to keep the enemy in the dark.
— But look, I have chosen my number 1033 for good reasons. I am the Prime minister, you know!
— I know, so therefore your new number 8179 is also a prime. You will just have to paste four new digits over the four old ones on your office door.
— No, it’s not that simple. Suppose that I change the first digit to an 8, then the number will read 8033 which is not a prime!
— I see, being the prime minister you cannot stand having a non-prime number on your door even for a few seconds.
— Correct! So I must invent a scheme for going from 1033 to 8179 by a path of prime numbers where only one digit is changed from one prime to the next prime.
Now, the minister of finance, who had been eavesdropping, intervened.
— No unnecessary expenditure, please! I happen to know that the price of a digit is one pound.
— Hmm, in that case I need a computer program to minimize the cost. You don't know some very cheap software gurus, do you?
— In fact, I do. You see, there is this programming contest going on... Help the prime minister to find the cheapest prime path between any two given four-digit primes! The first digit must be nonzero, of course. Here is a solution in the case above.
1033
1733
3733
3739
3779
8779
8179
The cost of this solution is 6 pounds. Note that the digit 1 which got pasted over in step 2 can not be reused in the last step – a new 1 must be purchased.
Input
One line with a positive number: the number of test cases (at most 100). Then for each test case, one line with two numbers separated by a blank. Both numbers are four-digit primes (without leading zeros).
Output
One line for each case, either with a number stating the minimal cost or containing the word Impossible.
Sample Input
3
1033 8179
1373 8017
1033 1033
Sample Output
6
7
0
Source
题目大意:
内阁首相抱怨机密部门的机密工作做的太差、为了保证自己的安全,内阁首相要求他的机密部门的人、每天给自己换一个门牌号,而且必须是质数、只有四位数字且每次只能换一位,问:从质数a到质数b每次只能换一位数字、最快要多少次能从a换到b?
解题思路:
运用BFS搜索,把每种情况遍历一遍就可以了。就是暴力;把每种情况都遍历一遍、然后就得出答案了。每次遍历的时候一定要初始化!!!
解题时候遇到的问题:
解题过程中、我想尽可能的剪枝,所以我的next数组只存了几个质因子,但是第一次提交直接WA了、然后我就发现千位、百位、十位也可能是10个数字的任意一个,所以又把数字都给加上了,然后第二次提交就直接AC了,心情美美哒。
AC代码如下:(有点长)
#include<iostream>
#include<queue>
using namespace std;
typedef pair<int,int> point;
int minn=99999;
bool pp[9999]={false};
bool book[9999]={false};
int next[10]={0,1,2,3,4,5,6,7,8,9};
queue<point> que;
bool prime(int n)
{ int i;
for(i=2;i<n/2+1;i++)
if(n%i==0)
return false;
return true;
}
void isprime()
{
for(int i=1001;i<=9999;i+=2)
if(prime(i))
pp[i]=true;
}
void qsw(int x,int &a,int &b,int &c,int &d)
{
d=x%10;
x/=10;
c=x%10;
x/=10;
b=x%10;
x/=10;
a=x%10;
}
void solve()
{
point p,p1;
minn=99999;
int Start,End;
cin >> Start >> End;
if(Start==End)
cout << "0\n";
else
{
for(int i=1000;i<9999;i++)
book[i]=false;
while(!que.empty())
que.pop();
bool flag=false;
p.first=Start;
p.second=0;
book[Start]=true;
que.push(p);
while(!que.empty())
{
p=que.front();
que.pop();
int x=p.first;
int g,s,b,q;
qsw(x,q,b,s,g);
// cout << q << " " << b << " " << s << " " << g << endl;
//遍历该数字的四位
//个位
for(int i=0;i<10;i++)
{
int t=q*1000+b*100+s*10+next[i];
if(pp[t]&&book[t]==false)
{
book[t]=true;
p1.first=t;
p1.second=p.second+1;
que.push(p1);
if(t==End)
{
flag=true;
break;
}
}
}
if(flag) break;
//十位
for(int i=0;i<10;i++)
{
int t=q*1000+b*100+next[i]*10+g;
if(pp[t]&&book[t]==false)
{
book[t]=true;
p1.first=t;
p1.second=p.second+1;
que.push(p1);
if(t==End)
{
flag=true;
break;
}
}
}
if(flag) break;
//百位
for(int i=0;i<10;i++)
{
int t=q*1000+next[i]*100+s*10+g;
if(pp[t]&&book[t]==false)
{
book[t]=true;
p1.first=t;
p1.second=p.second+1;
que.push(p1);
if(t==End)
{
flag=true;
break;
}
}
}
if(flag) break;
//千位
for(int i=0;i<10;i++)
{
int t=next[i]*1000+b*100+s*10+g;
if(pp[t]&&book[t]==false)
{
book[t]=true;
p1.first=t;
p1.second=p.second+1;
que.push(p1);
if(t==End)
{
flag=true;
break;
}
}
}
if(flag) break;
}
if(flag==false)
cout << "Impossible\n";
else
{
p=que.back();
cout << p.second << endl;
}
}
}
int main()
{
isprime();
int m;
cin >> m;
while(m--)
{
solve();
}
return 0;
}