Fibonacci Again
Problem Description
There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).
Input
Input consists of a sequence of lines, each containing an integer n. (n < 1,000,000).
Output
Print the word "yes" if 3 divide evenly into F(n).
There are another kind of Fibonacci numbers: F(0) = 7, F(1) = 11, F(n) = F(n-1) + F(n-2) (n>=2).
Input
Input consists of a sequence of lines, each containing an integer n. (n < 1,000,000).
Output
Print the word "yes" if 3 divide evenly into F(n).
Print the word "no" if not.
Sample Input
0
1
2
3
4
5
Sample Output
no
no
yes
no
no
no
Sample Input
0
1
2
3
4
5
Sample Output
no
no
yes
no
no
no
分析:
同余式的基本运算
a + c ≡b + c (mod n)
a - c ≡b - c (mod n)
a ·c ≡b ·c (mod n)
a - c ≡b - c (mod n)
a ·c ≡b ·c (mod n)
(a+b)%n=(a%n+b%n)%n
F(n) = F(n) ( mod m) = ( F(n-1) +F(n-2) )( mod m)
code:
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
long n;
while(scanf("%ld",&n) != EOF)
if (n%8==2 || n%8==6)
printf("yes\n");
else
printf("no\n");
return 0;
}
本文探讨了一种特殊的斐波那契数列,其中F(0)=7且F(1)=11,并通过模运算判断序列中第n项是否能被3整除。文章提供了一个高效的解决方案,通过对n取模简化计算过程。

被折叠的 条评论
为什么被折叠?



